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Background

Combinatorial Optimisation Problems (COPs)
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re=h Vehicle RoutingJ é; Nurse Rostering J §f} Bin Packing J

Some widely
investigated COPs

f

Population-based algorithms
E.g., Genetic Algorithms, Particle Swarm
Optimisation, Ant Colony Optimisation.

Elementary components:
« Operators o;,
* Acceptance Criteria q; 3




Background

Vehicle routing problems (VRPs)

S v Total distance
. v"Number of vehicles
i v'Carbon emissions

v'Time constraints
V...




Background

Vehicle routing problems (VRPs)
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Motivation

High demand of effective search algorithms

Designing effective algorithms:
expertise & efforts

Automation

Explore a larger
scope of candidate
algorithms
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Remove heavy
reliance on human
experts
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Decisions in
algorithm design
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Existing algorithms

'Existing algorithmic‘
components

Parameter settings

Representation

Problem-level
decisions

«—1 Objective function

Constraint handling




Introduction

____________ > Automation
Method

Operate upon

Auto selection

|
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' Feedback
|

: to automatically select from a portfolio of chosen algorithms
:

1

|

Auto composition

to automatically compose heuristics or components of some algorithms

Auto configuration
to automatically configure the parameters of pre-defined target algorithm(s)
Operate upon

Problem
e e mmmm e = Solutions

[1] Qu, R., Kendall, G. and Pillay, N., 2020. The general combinatorial optimization problem: Towards automated algorithm design. IEEE
Computational Intelligence Magazine, 15(2), pp.14-23.



Introduction

The General COP (GCOP) for AutoAD

» Algorithms — compositions of elementary algorithmic components

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————

¢ci = (02,aq,03,0q,04,...) :
A composition of elementary algorithmic components
g (e.g., basic operators o;, acceptance criteria a;, etc.).

. BaSIc operators o; in GCOP - an example

________________________________________________________________________________________________________________________________________________

| OChg(k hlw, hlb)
use h1, to change the values of k decision variables selected by h1,,

For solving NRP - change shift For solving VRP - shift k

type of k nurses customers
y, y,
[1] Qu, R., Kendall, G. and Pillay, N., 2020. The general combinatorial optimization problem: Towards automated algorithm design. IEEE
Computational Intelligence Magazine, 15(2), pp.14-23.



Introduction

General Combinatorial Optimisation Problem (GCOP)

Algorithmic Solutions of
compositions optimisation problem
o, | N g X N
53
S )
/ ___________________ e > S
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{02,a3,03,a,4, .

e - T = T = = =

A composition of elementary algorithmic components (e.g., basic
' operators 0;, acceptance criteria a;, etc. [1]).

GCOP method

Select & compose
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[1] Qu, R., Kendall, G. and Pillay, N., 2020. The general combinatorial optimization problem: Towards automated algorithm design. IEEE

Computational Intelligence Magazine, 15(2), pp.14-23.



gl AutoGCOP Framework

A simplified flow chart of

A flow chart of the AutoGCOP framework :
the improvement procedure

Start _
e

0; « Select(A,)

/ Input: A = {A;, Ao, Ag} / 1 Acceptance criteria a; € A,

— | Termination criteria t, € A
Construction Snew & Apply( 0;,5)
procedure
. Select and compose a € Ato Update Spest
L construct a solution L
Improvement s « Apply(a;,s, Spew)
procedure ,
l Select and compose a € A to
improve the solution ) N
/ Output: Spest / Tern})mate
Y

End

[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. Expert Systems with
Applications, 185, 115493.



Automated Composition with AutoGCOP

Automated composition based on GCO

/ C P - - - - -=-=- I\ Cr = (02,01, 03,02,03,...)
A simplified flow chart of 1 : C3 : L
L 1 Co : C3=(01’ %1, 02, 02, 03’)
| C : -------------------------------------------------------

0; « Select(A,) : _______ Zl_l/ Cn = (021 01, 03, 01, Og, )

I/ \\
Snew < Apply(0;, s) 7 01 )
P N ,/ g \
Update Sbest // \\’ ‘\
) o2 \
\ / \
.o )

Relations

- How to learn?
5 6 What to learn?

£ Sequential
s « Apply(a;, s, Spew) / \\\‘ 27T ,'Il
X
1

Y

11



ML for Automated Algorithm Composition

Different learning perspectives — to select basic o;

Online learning Task: Reinforcement learning (RL)
— 5
Learn individual performance. vs. transition Method: RL supported by Markov Chain (MC)
performance of basic o;
Offline learning Task: Sequence classification
_’_
> Learn good transitions of basic o; to make Method: Long short-term memory (LSTM) and
predictions Transformer
Offline learning Task: Rule mining
_)_

— Extract rules from good transitions of basic o; Method: Sequential rule mining



Research Testbed

Vehicle routing problems (VRPs)

Operator Description

G N g  Swap two customers in one route

™, ) oW g Swap two customers from different routes
‘ oin Move one customer to other position within the
ths same route
obW Move one customer to other position of another
LIS route
Orr Remove 10% customers and reinsert them

Basic operators instantiated for VRPs [1].

[1] Qu, R., Kendall, G. and Pillay, N., 2020. The general combinatorial optimization problem: Towards automated algorithm design. IEEE

Computational Intelligence Magazine, 15(2), pp.14-23. 19



Method 1: Markov Chain = ° =
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Online learning Task: Reinforcement learning (RL)
- .
Learn individual performance (IP) vs. Method: Markov Chain (MC) enhanced by RL

transition performance (TP) of basic o;

0, — 0, selected
| D
S, is not better
than Spest

0, — 05 selected
1 >
 §3 is better than
Shest

[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. Expert Systems with
Applications, 185, 115493.
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Method 1: Markov Chain

05
17%

o4
17%

16% 17%

Random method

No learning

05
28%

o4
15%

20%

Simple RL scheme

Learning the
performance of

individual operators |

05
33%

ol
24%

02
5%

o4
25% 8%

MC enhanced by RL

Learning the transitions
between operators

[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. Expert Systems with

Applications, 185, 115493.
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Method 2: Sequence Classification

Offline learning Task: Sequence classification
— .
Learn good sequences of basic o; Method: Long short-term memory (LSTM)
to make predictions and Transformer
Input Output _ _
- Search stage: Index of iteration of the sequence
i v LTSS AL VLAl - Operator features: ID, operation type, involved
1 {0z}, {04}, {03}, {02}, {03} {01} routes, performance — solution quality change etc.
2 {0,}, {04}, {0,}, {0,}, {0,} {0,} * Instance features: Vehicle capacity, customer
distribution, time window density and width etc.

[3] Meng, W., & Qu, R. (2024). Automated design of local search algorithms: Predicting algorithmic components with LSTM. Expert 16
Systems with Applications, 237, 121431.



Method 2: Some Key Findings

Figure 5.6: The comparison of learning models in terms of the AUC performance.
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AL

10

SLR

N
\
N

§

Sequence length setting

Systems with Applications, 237, 121431.

40

3

|

|
ki
kit
Kiesd
kiesd

NY B

LN RS

50

©RF ®3-layer LSTM ®LSTM ® Transformer

» New task: sequence
classification
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= Key features: Search
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features
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Method 3: Sequence Rule Mining

Sl eemlite Task: Rule mining
Extract rules from good sequences

of basic o Method: Sequential rule mining

Run ID Compositions of basic operator o;

1 {02}’ {01}’ {03}! {02}’ {03}v {01}’
2 {Ol}v {01}’ {02}1 {02}’ {01}’ {02}’

Sequences with length [

Seq1 {03}’ {02}’ {03}! {01}’ {01}

[4] Meng, W., & Qu, R. (2023, July). Sequential Rule Mining for Automated Design of Meta-heuristics. In Proceedings of the

Companion Conference on Genetic and Evolutionary Computation (pp. 1727-1735). 18



Method 3: Some Key Findings

Top 10 sequential rules for automated composition

Rules sup:  conf:
bw
oxchg — o, 1132 0.60
ozzs — 0pr 1134 0.59
Omh — 0y 1111 0.57 Instances Best-known solutions RN-GCOP SeqRuleGCOP
3};:’ g bw 1018 0.54 in the literature AVG AVG
Oa_cchg = Oins . C103 10,828.06[23] 12,364.31 12,042.12
o;’é hg = ol.bn”; 1050 0.53 C203 3,591.17[23] 4,502.51 4,296.84
Ol:n R obw 990 0.51 R107 11,104.66[25] 14,564.69 14,544.92
n‘f, Ins R208 2,726.82[20] 4,087.51 4,074.72
Oins —> Orr 1198 0.51 RC103  12,261.67[26] 14,881.08 | 1521638
0pp — of?n”; 1005 0.41 RC203 4,049.62[6] 4,784.47 4,595.81
bw in
OZns - oxchg 735 0.31
w in
0, ¢ = 0 715 0.30

[4] Meng, W., & Qu, R. (2023, July). Sequential Rule Mining for Automated Design of Meta-heuristics. In Proceedings of the
Companion Conference on Genetic and Evolutionary Computation (pp. 1727-1735).



Method 3: Some Key Findings

Common sequential rules

oy p

— _ — oin Swap two customers in
e ot

Crchg O . Swap two customers from

ot —o, 1134 0.59 X 207 wap

O;cr(l:hg — o0,y 1111 0.57 0o xeng different routes

0yvy = Ofs 1018 0.54 . Move one customer to

oin, = ok 1050 0.53 of other position within the

oir —ob¥ 990  0.51 same route

obw _ oin 715 0.30

ns ns -
o)¥ —op 1198 0.51
oy — 0% 1005 0.41
oW o in
Oins = oxchg 735 0.31 YO d

[4] Meng, W., & Qu, R. (2023, July). Sequential Rule Mining for Automated Design of Meta-heuristics. In Proceedings of the
Companion Conference on Genetic and Evolutionary Computation (pp. 1727-1735).



Method 3: Some Key Findings
Useful and interpretable knowledge to support algorithm design
Operator impact to optimisation

moactio Ny bact oD

Swap two customers in one Small
OxChg route
bw Swap two customers from No Small
X A} 0 i
0 0 Xchg different routes
. Move one customer to other No Small
oi position within the same
L L route
I P Move one customer to other Small Small
AZ < 0; "
o | L5 position of another route
Yo i Remove 10% customers and | Large Large
reinsert them

[4] Meng, W., & Qu, R. (2023, July). Sequential Rule Mining for Automated Design of Meta-heuristics. In Proceedings of the

Companion Conference on Genetic and Evolutionary Computation (pp. 1727-1735). 2



Conclusions

* A general AutoGCOP framework for automated composition
of GCOP components for designing local search algorithms.
» Investigation of machine learning techniques from different learning

perspectives:
Table 7.1: A summary of the main studies of different learning methods in the thesis.
Learning Learning Learning Knowledge : :
Chapters tasks methods style type Aim of learning
MC enhanced : L
Chapter 4 RL with RL Online Predictive  To forecast the next opera-
tor given the current opera-
tor
LSTM : e
Chapter 5 Sequence STM, Offline Predictive  To forecast the next opera-

classification = Transformer : :
tor given the previously ap-

plied operators and other
information
Sequential rule

mining RL Offline Descriptive To find frequent sequential

rules between operators 22

Chapter 6 Rule inference




Link to thesis
* Modelling AutoAD tasks as ML tasks
« Evaluating effectiveness and limitations

== What to learn

» Decision-making in algorithm design: interconnection
* Uncovering hidden knowledge: interpretability

Future Work Directions Ol e

» Other application domains

28]
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