

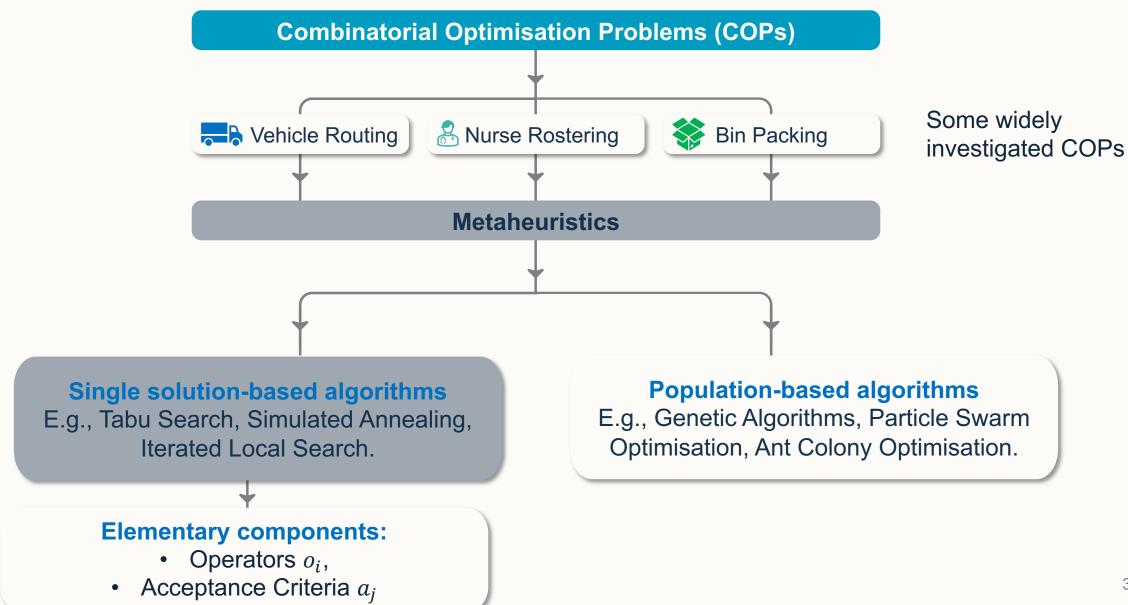
Automated Design of Local Search Algorithms for Vehicle Routing Problems

Weiyao Meng 10 June, 2024

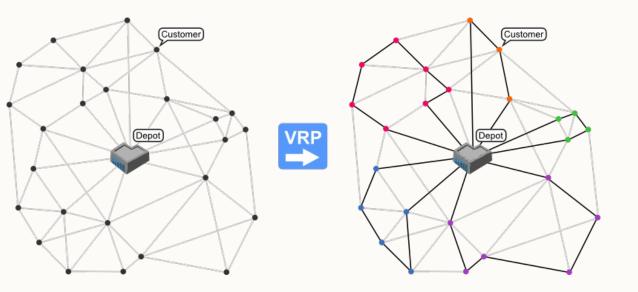
University of Nottingham <u>Weiyao.meng2@Nottingham.ac.uk</u> <u>https://weiyaomeng.github.io/</u>

- Background
- Introduction of Automated Algorithm Design
- AutoGCOP: A General Framework for Automated Composition
- Machine Learning for Automated Algorithm Composition
- Future Work Directions

Background

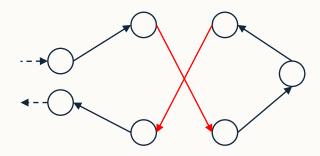


Vehicle routing problems (VRPs)

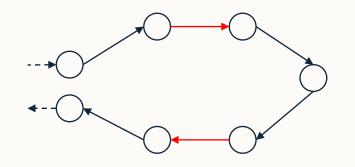


✓ Total distance
 ✓ Number of vehicles
 ✓ Carbon emissions
 ✓ Time constraints
 ✓ ...

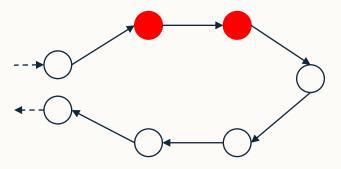
Vehicle routing problems (VRPs)



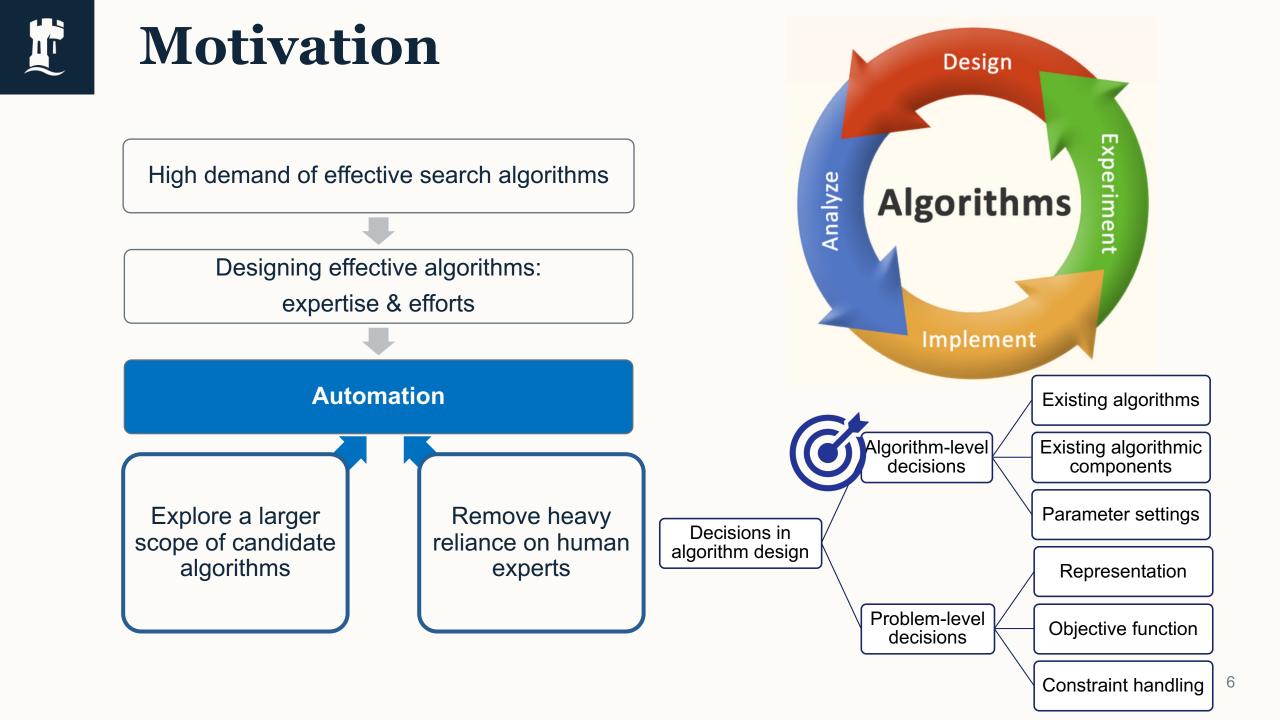




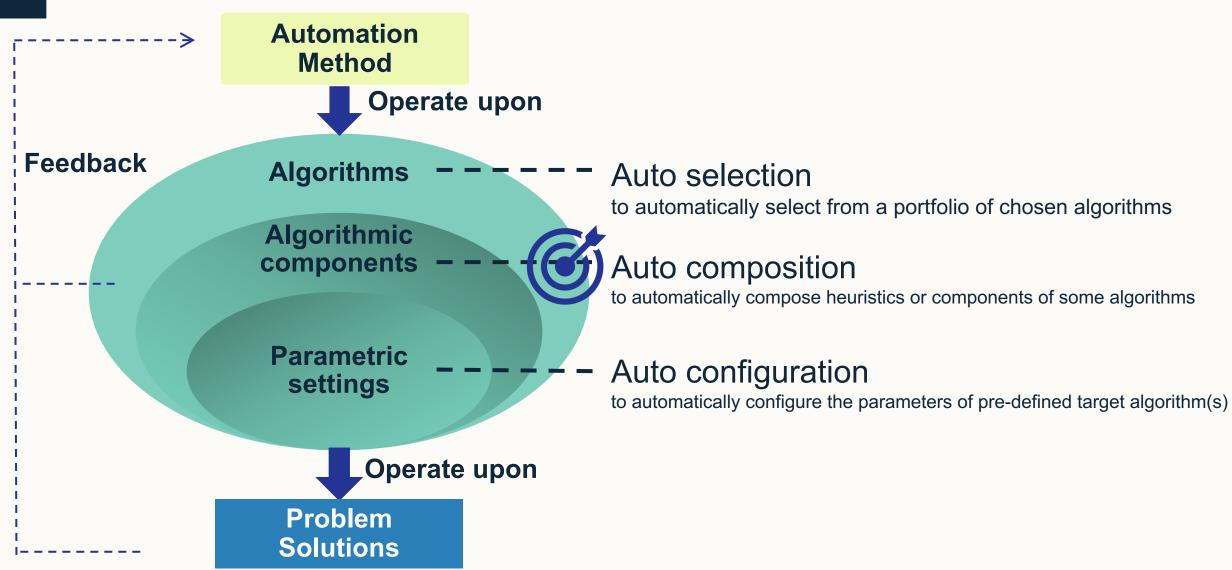
2-opt



Or-opt



Introduction



Introduction

The General COP (GCOP) for AutoAD

Algorithms – compositions of elementary algorithmic components

 $c_i = (o_2, a_1, o_3, o_1, a_4, \dots)$

A composition of elementary algorithmic components (e.g., basic operators o_i , acceptance criteria a_j , etc.).

• Basic operators *o_i* in GCOP - an example

 $o_{chg}(k,h1_w,h1_b)$

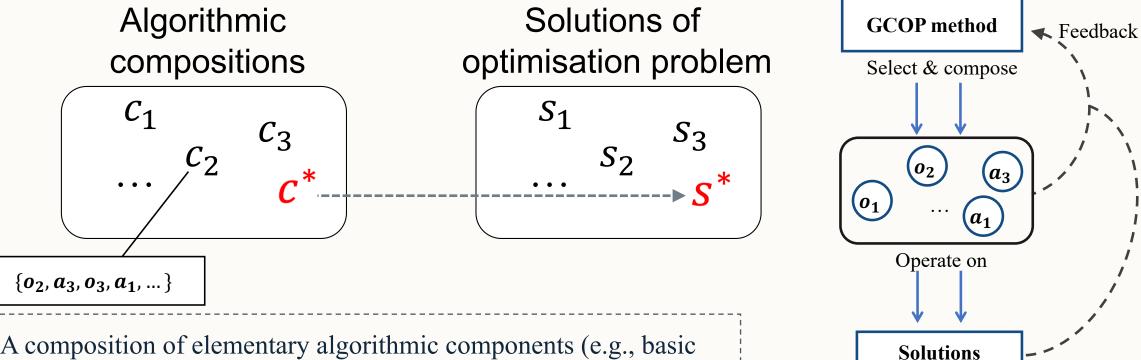
use $h1_b$ to change the values of k decision variables selected by $h1_w$.

For solving NRP - change shift type of k nurses

For solving VRP – *shift k customers*

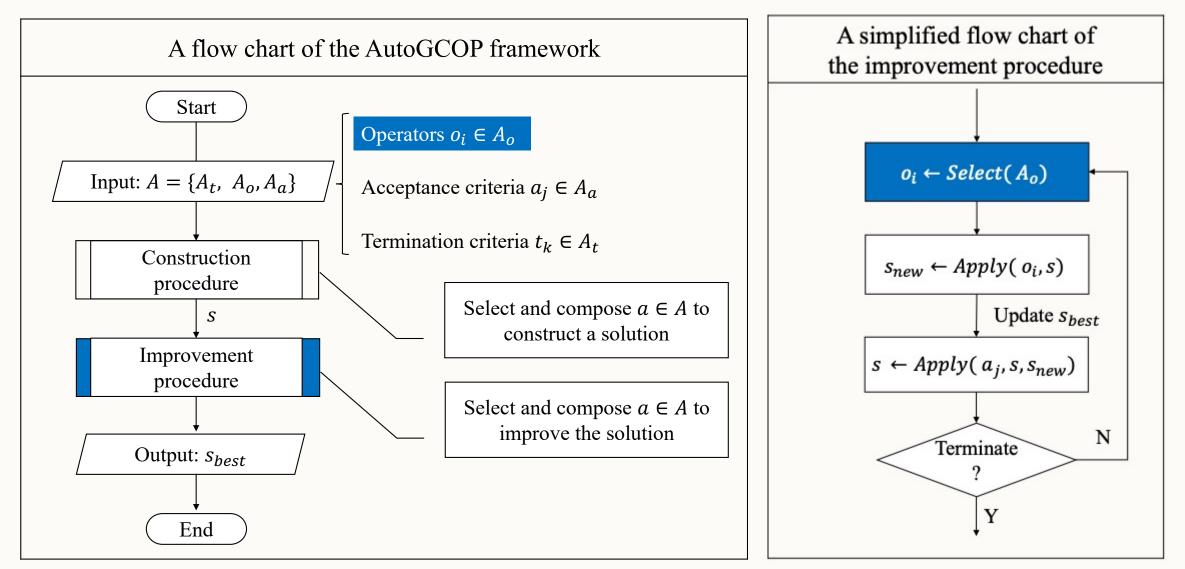
Introduction

General Combinatorial Optimisation Problem (GCOP)



A composition of elementary algorithmic components (e.g., basic operators o_i , acceptance criteria a_j , etc. [1]).

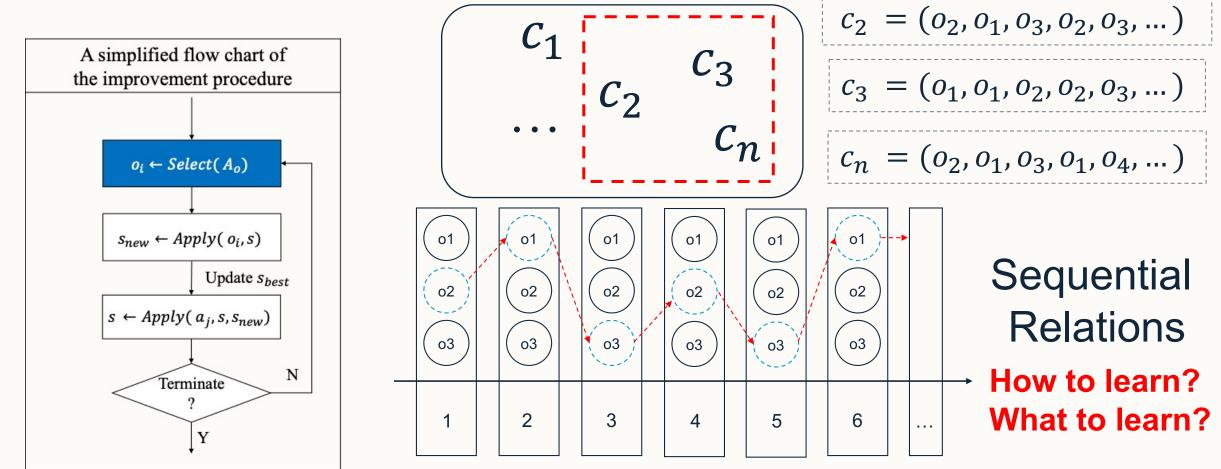
AutoGCOP Framework



[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. *Expert Systems with Applications*, *185*, 115493.

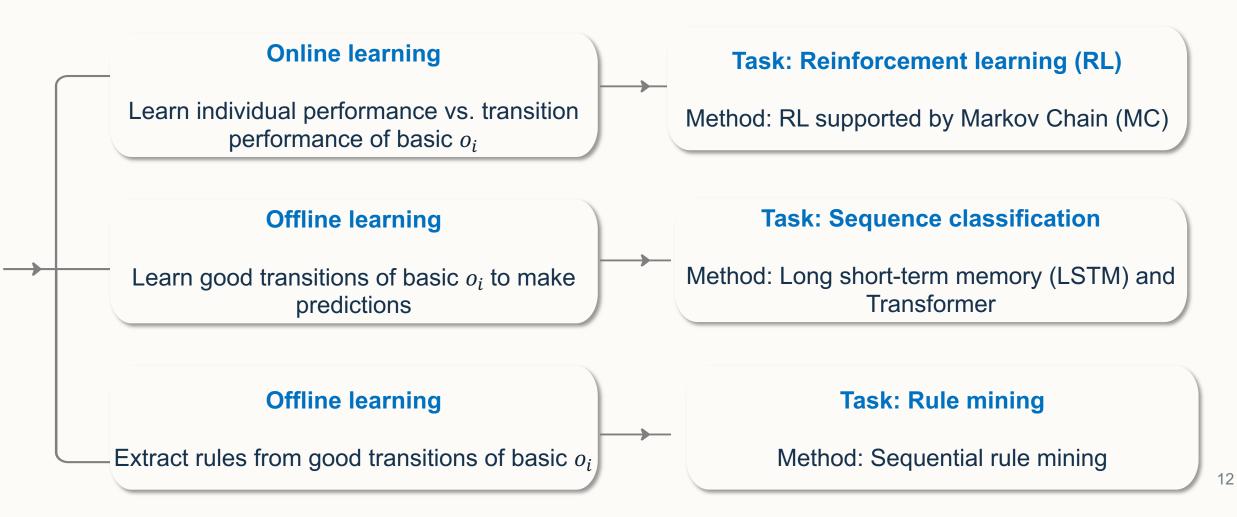
Automated Composition with AutoGCOP

Automated composition based on GCOP



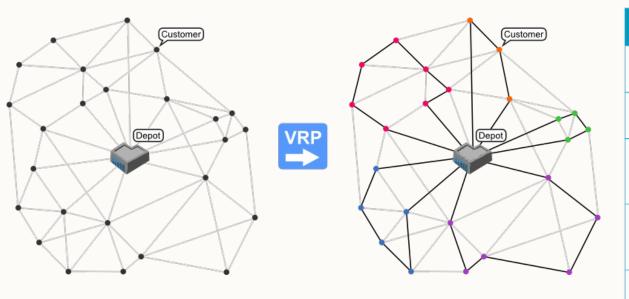
ML for Automated Algorithm Composition

Different learning perspectives – to select basic o_i



Research Testbed

Vehicle routing problems (VRPs)

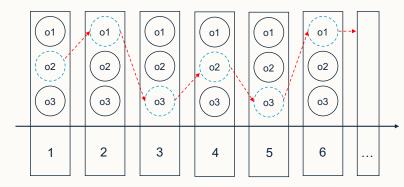


Operator	Description
o_{xchg}^{in}	Swap two customers in one route
o_{xchg}^{bw}	Swap two customers from different routes
o_{ins}^{in}	Move one customer to other position within the same route
o_{ins}^{bw}	Move one customer to other position of another route
0 _{rr}	Remove 10% customers and reinsert them

Basic operators instantiated for VRPs [1].

13

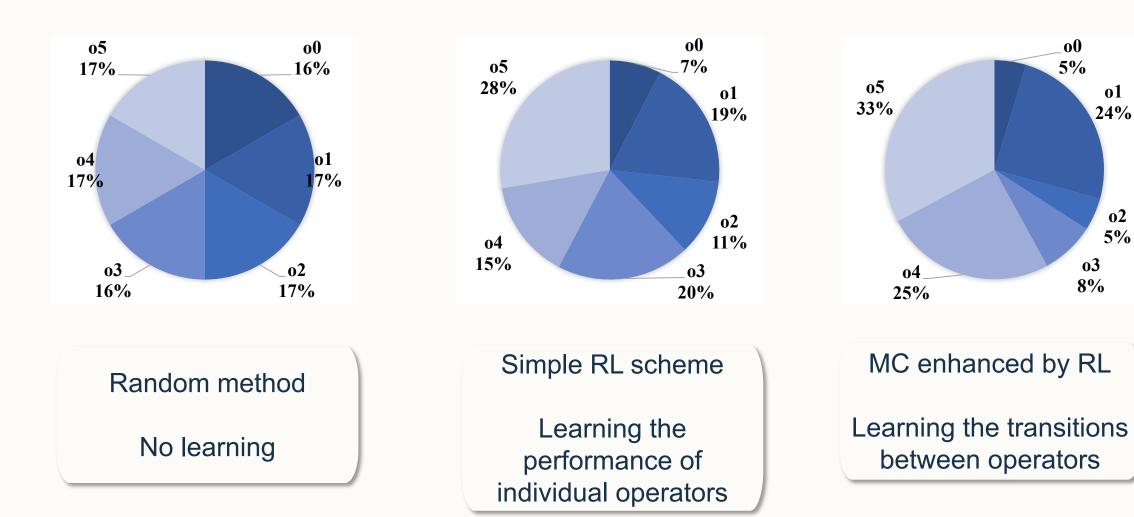
Method 1: Markov Chain



Online learning Learn individual performance (IP) vs. transition performance (TP) of basic o_i $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$ $0_1 \ 0_2 \ 0_3$

[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. *Expert Systems with Applications*, *185*, 115493.

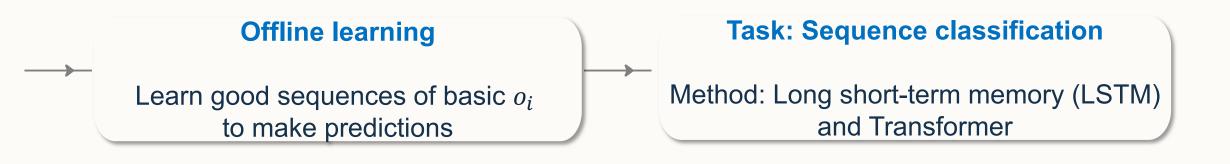
Method 1: Markov Chain



[2] Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learning on algorithmic components. Expert Systems with Applications, 185, 115493.

02

Method 2: Sequence Classification



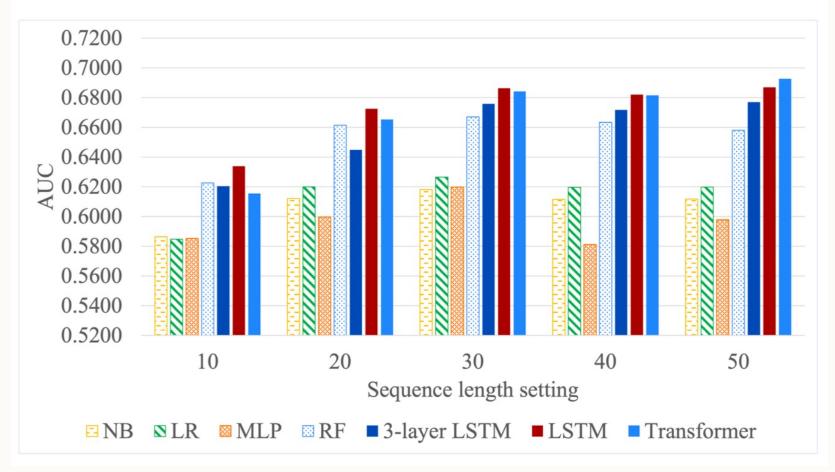
	Input	Output	
ID	Compositions of basic o_i	o_i to apply next	
1	$\{o_2\}, \{o_1\}, \{o_3\}, \{o_2\}, \{o_3\}$	$\{o_1\}$	
2	$\{o_1\},\{o_1\},\{o_2\},\{o_2\},\{o_1\}$	$\{o_2\}$	

Search stage: Index of iteration of the sequence
Operator features: ID, operation type, involved routes, performance – solution quality change etc.
Instance features: Vehicle capacity, customer distribution, time window density and width etc.

[3] Meng, W., & Qu, R. (2024). Automated design of local search algorithms: Predicting algorithmic components with LSTM. *Expert Systems with Applications*, 237, 121431.

Method 2: Some Key Findings

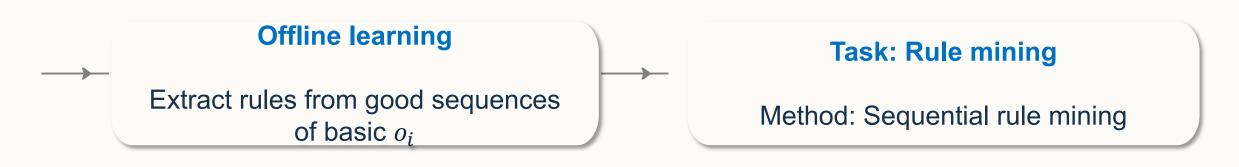
Figure 5.6: The comparison of learning models in terms of the AUC performance.



- New task: sequence classification
- New models: LSTM and Transformer
- Key features: Search stage and instance features

[3] Meng, W., & Qu, R. (2024). Automated design of local search algorithms: Predicting algorithmic components with LSTM. *Expert Systems with Applications*, 237, 121431.

Method 3: Sequence Rule Mining



Run ID	Compositions of basic operator o_i		
1	$\{o_2\}, \{o_1\}, \{o_3\}, \{o_2\}, \{o_3\}, \{o_1\}, \dots$		
2	$\{o_1\}, \{o_1\}, \{o_2\}, \{o_2\}, \{o_1\}, \{o_2\}, \dots$		

ID	Sequences with length <i>l</i>		
seq1	$\{o_3\}, \{o_2\}, \{o_3\}, \{o_1\}, \{o_1\}$		

Method 3: Some Key Findings

Top 10 sequential rules for automated composition

Rules	sup:	conf:
$o_{xchg}^{bw} \rightarrow o_{rr}$	1132	0.60
$o_{ins}^{in} \rightarrow o_{rr}$	1134	0.59
$o_{xchg}^{in} \rightarrow o_{rr}$	1111	0.57
$o_{xchg}^{bw} \rightarrow o_{ins}^{bw}$	1018	0.54
$o_{xchg}^{in} \rightarrow o_{ins}^{bw}$	1050	0.53
$o_{ins}^{in} \rightarrow o_{ins}^{bw}$	990	0.51
$o_{ins}^{bw} \rightarrow o_{rr}$	1198	0.51
$o_{rr} \rightarrow o_{ins}^{bw}$	1005	0.41
$o_{ins}^{bw} \rightarrow o_{xchg}^{in}$	735	0.31
$o_{ins}^{bw} \rightarrow o_{ins}^{in}$	715	0.30

	Det la constant	DNL COOD	
Instances	Best-known solutions	RN-GCOP	SeqRuleGCOP
	in the literature	AVG	AVG
C103	10,828.06[23]	12,364.31	12,042.12
C203	3,591.17[23]	4,502.51	4,296.84
R107	11,104.66[25]	14,564.69	14,544.92
R208	2,726.82[20]	4,087.51	4,074.72
RC103	12,261.67[26]	14,881.08	15,216.38
RC203	4,049.62[6]	4,784.47	4,595.81
5			

Method 3: Some Key Findings

Common sequential rules

■ X ₀ -	$\rightarrow Y_{o}$	
Rules	sup:	conf:
$o_{xchq}^{bw} \rightarrow o_{rr}$	1132	0.60
$o_{ins}^{in} \rightarrow o_{rr}$	1134	0.59
$o_{rcha}^{in} \rightarrow o_{rr}$	1111	0.57
$o_{xcha}^{bw} \rightarrow o_{ins}^{bw}$	1018	0.54
$o_{xchg}^{in} \rightarrow o_{ins}^{bw}$	1050	0.53
$o_{ins}^{in} \rightarrow o_{ins}^{bw}$	990	0.51
$o_{ins}^{bw} \rightarrow o_{rr}$	1198	0.51
$o_{rr} \rightarrow o_{ins}^{bw}$	1005	0.41
$o_{ins}^{bw} \rightarrow o_{xchq}^{in}$	735	0.31
$o_{ins}^{bw} \rightarrow o_{ins}^{in}$	715	0.30

	Operator	Description
ſ	o_{xchg}^{in}	Swap two customers in one route
X_o -	o_{xchg}^{bw}	Swap two customers from different routes
	o ⁱⁿ ins	Move one customer to other position within the same route
Y ₀ -	o ^{bw} ins	Move one customer to other position of another route
	0 _{rr}	Remove 10% customers and reinsert them

Method 3: Some Key Findings

Useful and interpretable knowledge to support algorithm design Operator impact to optimisation

		Operator	Description	Impact to NV	Impact to TD
		o_{xchg}^{in}	Swap two customers in one route	No	Small
X_o -	A_o^1 -	o_{xchg}^{bw}	Swap two customers from different routes	No	Small
		o ⁱⁿ ins	Move one customer to other position within the same route	No	Small
	A_o^2	o ^{bw} ins	Move one customer to other position of another route	Small	Small
Y_o -	$A_o^3 -$	0 _{rr}	Remove 10% customers and reinsert them	Large	Large

Conclusions

- A general AutoGCOP framework for automated composition of GCOP components for designing local search algorithms.
- Investigation of machine learning techniques from different learning perspectives:

Chapters	Learning tasks	Learning methods	Learning style	Knowledge type	Aim of learning
Chapter 4	RL	MC enhanced with RL	Online	Predictive	To forecast the next opera- tor given the current opera- tor
Chapter 5	Sequence classification	LSTM, Transformer	Offline	Predictive	To forecast the next opera- tor given the previously ap- plied operators and other information
Chapter 6	Rule inference	Sequential rule mining RL	Offline	Descriptive	To find frequent sequential rules between operators

Table 7.1: A summary of the main studies of different learning methods in the thesis.

Future Work Directions

How to learn

- Modelling AutoAD tasks as ML tasks
- Evaluating effectiveness and limitations

What to learn

- Decision-making in algorithm design: interconnection
- Uncovering hidden knowledge: interpretability

New testbed

Other application domains

Link to thesis

References

[1] Qu, R., Kendall, G. and Pillay, N., 2020. The general combinatorial optimization problem: Towards automated algorithm design. *IEEE Computational Intelligence Magazine*, *15*(2), pp.14-23.

[2] Meng, W. and Qu, R., 2021. Automated design of search algorithms: Learning on algorithmic components. *Expert Systems with Applications*, 185, p.115493.

[3] Meng, W. and Qu, R., 2024. Automated design of local search algorithms: Predicting algorithmic components with LSTM. *Expert Systems with Applications*, 237, p.121431.

[4] Meng, W. and Qu, R., 2023, July. Sequential Rule Mining for Automated Design of Meta-heuristics. In *Proceedings of the Companion Conference on Genetic and Evolutionary Computation* (pp. 1727-1735).

[5] Yi, W., Qu, R., Jiao, L. and Niu, B., 2022. Automated design of metaheuristics using reinforcement learning within a novel general search framework. *IEEE Transactions on Evolutionary Computation*.

University of Nottingham

Thank you!

Weiyao Meng

University of Nottingham <u>Weiyao.meng2@Nottingham.ac.uk</u> <u>https://weiyaomeng.github.io/</u>

Weiyao Meng Data Scientist (KTP Associate) | PhD in CS

