
Automated design of local search algorithms: Predicting

algorithmic components with LSTM

Weiyao Menga,∗, Rong Qua

aSchool of Computer Science, University of Nottingham, Nottingham, UK

Abstract

With a recently defined AutoGCOP framework, the design of local search

algorithms has been defined as the composition of elementary algorithmic

components. The effective compositions of the best algorithms thus retain

useful knowledge of effective algorithm design. This paper investigates ma-

chine learning to learn and extract useful knowledge in effective algorithmic

compositions. The process of forecasting algorithmic components in the de-

sign of effective local search algorithms is defined as a sequence classification

task, and solved by a long short-term memory (LSTM) neural network to sys-

tematically analyse algorithmic compositions. Compared with other learning

models, the results reveal the superior prediction performance of the proposed

LSTM. Further analysis identifies some key features of algorithmic compo-

sitions and confirms their effectiveness for improving the prediction, thus

supporting effective automated algorithm design.

Keywords: Automated algorithm design, Search algorithms, LSTM,

Imbalanced dataset, Data re-sampling

∗Corresponding author
Email addresses: weiyao.meng@nottingham.ac.uk (Weiyao Meng),

rong.qu@nottingham.ac.uk (Rong Qu)

Preprint submitted to Expert Systems with Applications August 22, 2023

1. Introduction

In optimisation research, the design of effective algorithms often presents

a challenge and burden for researchers due to the extensive expertise and

efforts required in making a large number of decisions (Pillay et al., 2018).

The automation of algorithm design releases humans from the tedious design

process and supports the more flexible exploration of a larger number of un-

seen algorithms which would otherwise require substantial time and expertise

to design (Meng & Qu, 2021).

With recent successes of artificial intelligence, in particular machine learn-

ing, automation in algorithm design is fast emerging along with the successful

research development in evolutionary computation (Qu, 2021). With the tax-

onomy defined in (Qu et al., 2020), the latest research in automated algorithm

design has been categorised into three themes as follows:

• Automated configuration: to automatically determine parameter val-

ues of specific algorithms to solve a set of problem instances (Hutter

et al., 2007).

• Automated selection: to automatically select the most appropriate al-

gorithm from a portfolio of candidate algorithms for a set of problem

instances.

• Automated composition: to automatically compose or combine heuris-

tics or components of arbitrary algorithms to solve the problem at hand

online (Qu et al., 2020).

2

The research in automated composition takes a bottom-up method to

compose a set of algorithmic components flexibly, generating new and generic

algorithms (Qu et al., 2020). The other two themes of research follow a top-

down approach, resulting in variants and portfolios of the existing algorithms.

In line with automated algorithm composition, a new model named General

Combinatorial Optimisation Problem (GCOP) (Qu et al., 2020) formally

defines the problem of algorithm design itself as a combinatorial optimisation

problem. In GCOP, algorithm design decisions are defined as elementary

algorithmic components, including basic operators, acceptance criteria and

termination criteria (Meng & Qu, 2021). Various search algorithms can be

modelled as compositions of these basic components. The GCOP model thus

provides standard and theoretical support for automated algorithm design

(Qu et al., 2020).

This paper investigates the effective algorithmic compositions based on

GCOP, aiming to explore new knowledge to support automated algorithm

design. In particular, we focus on and analyse three categories of algorithm

composition based on the types of components in the GCOP search space,

including specific, semi-specific, and general automated composition.

The specific automated composition in the literature combines common

components of specific types of algorithms or target algorithms. The most

studied specific algorithms include SAT solver (KhudaBukhsh et al., 2016),

simulated annealing algorithms (Franzin & Stützle, 2019), iterated greedy

algorithms (Mascia et al., 2013), stochastic local search algorithms (Pagnozzi

& Stützle, 2019) and multi-objective evolutionary algorithms (Bezerra et al.,

2015), (Lopez-Ibanez & Stutzle, 2012).

3

The semi-specific automated composition supports the flexible compo-

sition of specifically designed components. Hyper-heuristics (Pillay & Qu,

2018), which operate at a higher level on a set of low-level heuristics, repre-

sent a main line of research in this category. In one type of hyper-heuristics,

selection hyper-heuristics, the components are problem-specific heuristics or

operators. Various learning models have been applied to iteratively select

low-level heuristics for automated composition, including Markov chain (Mc-

Clymont & Keedwell, 2011), hidden Markov models (Kheiri & Keedwell,

2015), choice function (Cowling et al., 2000), multi-armed bandit (Sabar

et al., 2015), (Ferreira et al., 2017) and reinforcement learning (Nareyek,

2003), (Burke et al., 2003), (Khamassi et al., 2011), (Di Gaspero & Urli,

2011), (Özcan et al., 2012) and (Di Gaspero & Urli, 2012). Another type of

hyper-heuristics, generation hyper-heuristics, mainly uses genetic program-

ming (Banzhaf et al., 1998) to compose the elements of a specific type of

target heuristics. It can be seen as based on an algorithmic component set

of common features of the target algorithms. The mostly studied methods

in generation hyper-heuristics include dispatching rules for job scheduling

problem (Pickardt et al., 2010), (Nguyen et al., 2012), local search algo-

rithms for bin packing (Burke et al., 2011) and satisfiability testing (Fuku-

naga, 2008), and evolutionary algorithms for continuous optimisation prob-

lems (Miranda et al., 2017), function optimisation, travelling salesman prob-

lems and the quadratic assignment problem (Oltean, 2005), vehicle routing

problems (Jacobsen-Grocott et al., 2017), and timetabling problems (Sabar

et al., 2013), (Pillay & Özcan, 2019).

The general automated composition supports the flexible composition

4

of the elementary algorithmic components as defined in GCOP. A general

AutoGCOP framework is built in (Meng & Qu, 2021) to support the auto-

mated design of local search algorithms by combining elementary algorith-

mic components in GCOP. In our previous study (Meng & Qu, 2021), a

Markov chain-based GCOP method presents superior performance for de-

signing new algorithms automatically within AutoGCOP on vehicle routing

problems with time window constraints (VRPTW). A general search frame-

work (GSF) based on GCOP is proposed in (Yi et al., 2022) to support the

design of both local search and population-based algorithms. Reinforcement

learning has been applied to design new general population-based algorithms

on VRPTW.

In specific and semi-specific automated composition, more human deci-

sions are involved while selecting and configuring the algorithmic component

set. These components (particularly in selection hyper-heuristics) can be

seen as manually defined compound components that combine some of the

basic components in GCOP (Meng & Qu, 2021). Thus, the resulting al-

gorithms are only a subset of those combined from the basic algorithmic

components within AutoGCOP. In other words, the AutoGCOP framework

supports the more flexible exploration of a larger space of new unseen local

search algorithms.

From the aspect of machine learning, the search process generates a con-

siderable volume of data (Karimi-Mamaghan et al., 2022), which has been

discarded in the meta-heuristic literature. Some recent selection hyper-

heuristics explore these data to determine an elite set of low-level heuristics

(i.e., components) for composition space (Cowling & Chakhlevitch, 2003),

5

(Chakhlevitch & Cowling, 2005), (Mısır et al., 2013), (Remde et al., 2012)

and (Soria-Alcaraz et al., 2017). With the historical data of the applied low-

level heuristics, machine learning is used to predict which low-level heuristics

to use. Various conventional machine learning models investigated include

association classifier (Thabtah & Cowling, 2008), k-means classifier (Asta

et al., 2013), decision trees (Asta & Özcan, 2014), and neural networks

(Tyasnurita et al., 2015) and (Tyasnurita et al., 2017). The study in (Yi

et al., 2023) identifies the effectiveness of learning from the combinations of

algorithmic components to support algorithm design, suggesting that useful

knowledge can be extracted from the algorithmic component sequences for

automating the algorithm composition in problem-solving. Algorithmic com-

positions, however, are time-dependent sequences (components determined

at each search step), with a temporal correlation between the components.

This presents challenges to conventional learning models in learning to pre-

dict algorithmic components in the search.

With the new AutoGCOP framework, a large amount of data on effective

compositions of basic algorithmic components can be collected consistently,

supporting systematic analysis to identify new knowledge towards automated

algorithm design. In recent breakthroughs analysing sequential data and text

prediction, deep recurrent networks are introduced (Wan et al., 2020). Elman

network, a variant of recurrent networks, has been used to predict the types of

low-level heuristics (Yates & Keedwell, 2017). Aside from (Yates & Keedwell,

2017), sequence classification seems to be an under-explored terrain in the

automated design of search algorithms.

In this paper, the automated composition is modelled as a sequence clas-

6

sification task upon standard basic algorithmic components. A large amount

of data on effective algorithmic compositions of the basic components are

collected within the AutoGCOP framework. An LSTM network model is

proposed for the defined task to learn the potential temporal correlation

in the algorithmic compositions for forecasting the selection of algorithmic

components. The proposed LSTM model is investigated against a set of com-

monly used conventional classifiers, to demonstrate its effectiveness on the

defined prediction task.

The contributions of this paper are threefold as follows:

• Firstly, the prediction of algorithmic components in automated algo-

rithm compositions is formally defined as a sequence prediction task for

machine learning, supported by the underlying GCOP model theoret-

ically. With the collected data upon the basic GCOP components as

benchmark data, the newly defined machine learning task brings new

challenges to the machine learning community and encourages cross-

disciplinary collaborations between evolutionary computation and ma-

chine learning.

• Secondly, this study confirms the superior performance of LSTM in the

defined new machine learning task on automated algorithm design. To

the best of our knowledge, it is the first attempt to propose an LSTM

model in learning from the automated compositions for the automated

design of search algorithms.

• Thirdly, the analysis of different types of information confirms the ef-

fectiveness of problem instance features and search stage in algorithmic

7

compositions. These identified two types of features offer new insights

and inform further effective algorithm design.

In the rest of the paper, Section 2 defines the new machine learning task

on automated algorithm composition. Section 3 presents the algorithmic

composition data for further investigations. Section 4 presents the proposed

LSTM model for the defined prediction task. Section 5 discusses the exper-

imental setup and result analysis, followed by conclusions and future works

in Section 6.

2. Automated algorithm design defined as a machine learning task

2.1. An overview of the general automated composition framework

In the newly defined GCOP model in (Qu et al., 2020), various search

algorithms are seen as compositions of a finite set A of elementary algorithmic

components a ∈ A. Algorithm design can be defined as a combinatorial

optimisation problem with decision variables taking these a as values from

A. The solution space of GCOP consists of algorithmic compositions c upon

a. Each c represents a new algorithm for solving optimisation problems p, i.e.

a solution s for p is obtained by a corresponding algorithmic composition c,

c → s. The objective of GCOP is to search for the optimal c∗ which produces

the optimal s∗ for p, i.e. c∗ → s∗.

A general framework named AutoGCOP (Meng & Qu, 2021) has been

built to support the automated composition, with the following three cate-

gories of elementary algorithmic components a in an extended GCOP model:

• Operators oi ∈ A1.0o : modify values of the decision variables in s1 to

generate a new solution s2 in the search space of p.

8

• Acceptance criteria aj ∈ A1.0a : determine if and how s2 is accepted in

the search.

• Termination criteria tk ∈ At: control when to terminate a loop.

In other words, the existing algorithms can be seen as specific GCOP so-

lutions composed manually to automatically design new local search algo-

rithms.

With the AutoGCOP model, the design of various local search algorithms

can be defined as the flexible composition of elementary algorithmic compo-

nents (Meng & Qu, 2021). In the optimisation process for solving GCOP,

compositions c of a for solving p, i.e. the design of various search algorithms,

can be then obtained automatically within AutoGCOP. This large number of

new algorithms generated from AutoGCOP presents a considerable amount

of data on algorithm design. Further analysis of the optimal or most effective

algorithmic compositions may lead to new knowledge and a deeper under-

standing of algorithm design (Qu et al., 2020), some of which may be difficult

to identify by human experts.

2.2. The new machine learning task on algorithm composition

Within AutoGCOP, the most effective compositions which produce the

best solutions at the end of the search have been collected. Among these

effective compositions, the sequences of operators oi that lead to improvement

in solution quality are of the most interest in this research.

We denote a sequence q ∈ Q of length l as an ordered list of operators oi

applied in the last l iterations, denoted by Equation (1).

q = {oi−l, . . . , oi−2, oi−1}, l = |q|. (1)

9

At each search step, the information of each applied oi is stored with a vector.

Sequence classification is a type of classification task of classifying se-

quences into existing categories (Xing et al., 2010). This study concerns the

algorithm design problem of selecting operators to compose based on the

information of applied operator sequences. This problem is formulated as

a sequence classification problem as follows: given a finite set of operators

Ao as a set of class labels, the task of sequence classification is to build a

sequence classifier F , which maps an operator sequence q to a class label

oi ∈ Ao, written as F : q → oi.

The defined task aims to explore the hidden sequential relations be-

tween the operators within operator compositions. The defined task in this

study can also be treated as a conventional multi-class classification prob-

lem (Crammer & Singer, 2002) by transforming the sequence into a feature

vector, solved by conventional classifiers (such as decision trees and neu-

ral networks) (Xing et al., 2010). The conventional classification problem,

however, treats each oi in q as an independent feature and analyses them

in isolation. The temporal dependencies between operators oi within the

sequences are thus lost in this transformation (Xing et al., 2010). The trans-

formation also increases the dimensions of the input data, leading to more

challenges to conventional models.

2.3. Discussion on the newly defined task

It is important to note that the defined task is based on the hypothesis

that algorithmic compositions might exhibit time-series characteristics and

dependencies among the applied algorithmic components. Building upon this

hypothesis, the data of algorithmic compositions can be seen as sequential

10

data, presenting an opportunity to explore the knowledge hidden in the data

with machine learning techniques. However, no prior research discusses suit-

able learning techniques for the sequence classification of algorithmic com-

positions.

Among various applications of sequence classification, text classification

which aims to retrieve information in text data (Xing et al., 2010), is highly

relevant to this study. Text data includes sequences of text (e.g., words,

tokens, or characters), each sequence associated with labels or categories

that classification models aim to predict. The machine learning techniques

that obtain good performance in text classification (Kowsari et al., 2019)

might perform well in the defined task of this study.

Conventional classifiers, such as naive Bayes (Rish et al., 2001), logistic re-

gression (Dreiseitl & Ohno-Machado, 2002), neural networks (Murtagh, 1991)

and random forest (Breiman, 2001), have been widely used in text classifica-

tion (Shah et al., 2020) because of their simple implementation and effective

performance (Kowsari et al., 2019). Random forest has shown competitive

performance among conventional classifiers in text classification (Chen et al.,

2022), especially for imbalanced text data (Wu et al., 2014). It is important

to note that conventional classifiers learn from text data by treating the text

sequences as fixed-length feature vectors, thus the sequential nature of fea-

tures within the sequence is difficult to capture. In other words, the text

classification task is treated as a conventional classification problem by con-

ventional classifiers.

Recently, deep learning techniques have been greatly applied in text classi-

fication with overall better performance than conventional classifiers (Razno,

11

2019). These techniques learn complex patterns and representations from

text data with different mechanisms. Some representative methods include

recurrent neural networks (Goodfellow et al., 2016) which learn sequential in-

formation and dependencies within the text for classification, and attention-

based neural networks (Vaswani et al., 2017) which use attention mechanisms

to focus on the most relevant information in the sequence for classification.

The nature of the data is important for choosing suitable learning tech-

niques. The investigations of this study are built upon the hypothesis on the

sequential feature of algorithmic composition data. If such a feature indeed

exists, it is possible that conventional classifiers may not achieve satisfactory

predictive performance compared to recurrent neural networks (RNNs) in

the defined sequence classification task. Therefore, it would be interesting

to perform a comparative analysis to evaluate the predictive performance of

RNNs against conventional classifiers in the defined sequence classification

task. This comparison might reveal the presence of the sequential feature in

operator sequence data, which is useful for supporting the further analysis of

algorithmic compositions.

3. Data of algorithm design for machine learning

To investigate the new sequence classification problem on algorithm com-

position, the widely studied vehicle routing problem with time window con-

straints (VRPTW) is used as the domain problem. It has been observed that

the data collected is extremely imbalanced, thus in-depth analysis has been

conducted using re-sampling methods.

12

3.1. The VRPTW problem

VRP is one of the most investigated combinatorial optimisation problems

in operational research (Wong, 1983). The basic VRP (Fisher & Fisher,

1995) concerns assigning and ordering customer delivery demands to a set

of vehicles while minimising the total travel costs serving all the customers.

VRPTW is one of the most widely studied variants, where customers must be

served within specified time intervals (Cordeau et al., 2007). The VRPTW

concerned in this work considers the dual objectives of minimising the number

of vehicles (NV) and minimising the total travel distance (TD), as shown in

Equation (2), where c is set to 1000 empirically and widely used in the

literature (Walker et al., 2012).

c×NV + TD (2)

The investigations have been conducted on the benchmark Solomon 100 set

(Solomon, 1987) as shown in Table 1, covering different instance features.

3.2. Collection of operator sequences with GCOP methods

To explore insights on effective algorithm compositions, the most basic op-

erators oi as shown in Table 2 have been investigated within AutoGCOP. This

set of basic operators presents different characteristics for solving VRPTW

(Meng & Qu, 2021).

Within AutoGCOP, MC-GCOP (Meng & Qu, 2021), which adaptively

learns the transition performance between pairs of basic components, presents

superior overall performance for composing algorithmic components to solve

VRPTW problem instances (Meng & Qu, 2021). The MC-GCOP method is

13

Table 1: Features of the benchmark VRPTW instances, including vehicle capacity (VC),

scheduling horizon (SH), customer distribution type (DT), service time (ST), time window

density (TWD) and width (TWW).

Name VC SH DT ST TWD TWW

C102 200 Short C 90 75% 61.27

C103 200 Short C 90 50% 59.90

C104 200 Short C 90 25% 60.64

C105 200 Short C 90 100% 121.61

C202 700 Long C 90 75% 160.00

C203 700 Long C 90 50% 160.00

C204 700 Long C 90 25% 160.00

C205 700 Long C 90 100% 320.00

R102 200 Short R 10 75% 10.00

R107 200 Short R 10 50% 30.00

R108 200 Short R 10 25% 30.00

R109 200 Short R 10 100% 58.89

R202 1000 Long R 10 75% 115.23

R203 1000 Long R 10 50% 117.34

R208 1000 Long R 10 100% 349.50

R209 1000 Long R 10 100% 383.27

RC102 200 Short RC 10 75% 30.00

RC103 200 Short RC 10 50% 30.00

RC104 200 Short RC 10 25% 30.00

RC105 200 Short RC 10 100% 54.33

RC202 1000 Long RC 10 75% 120.00

RC203 1000 Long RC 10 50% 120.00

RC204 1000 Long RC 10 25% 120.00

RC205 1000 Long RC 10 100% 223.06

14

Table 2: Features of the operators in operator sequences, including relative neighbourhood

size (NS), involved routes of operation (IR) and operation type (OT).

Operator NS IR OT

oinxchg Small 1-route Exchange

obwxchg Small 2-route Exchange

oinins Small 1-route Insert

obwins Small 2-route Insert

orr Large n-route Ruin-recreate

2-opt∗ Medium 2-route Exchange

applied to the problem instances in Table 1 to produce a collection of effec-

tive algorithmic compositions of the operators in Table 2. The information in

each search iteration recorded includes the current index of iteration, index of

the applied oi, and the objective function value of the current solution, new

solution and the best-found solution after using oi (denoted by f(scurrent),

f(snew) and f(sbest), respectively).

The best 10% algorithm compositions according to the solution quality

in the current iteration are first collected for each problem instance. The

information of the iterations within these elite algorithm compositions which

lead to f(sbest) improvements is then retained in a collection of operator

sequences.

Each operator sequence consists of three groups of features as follows:

• Search stage feature: information of the current iteration, stored by

the index of iteration of the search (Iter).

• Operator features: each operator in the operator sequence is described

by its index (O index) and features shown in Table 2 and whether the

15

solution quality is improved after it has been applied (SC).

• Instance features: problem instance features in Table 1.

Let q = {oinxchg, oinins, orr} be an operator sequence labeled with obwxchg to be

applied at the tth iteration for instance C102. Let {ft−3, ft−2, ft−1} describe

whether the solution quality is improved after using oi ∈ q. Table 3 presents

q → oi with features as the input and output to the sequence classification

task.

Table 3: An example operator sequence (q) described by features as input and the corre-

sponding label (oi) as output, to the sequence classification task.

Input: q Output: oi

Iter O index NS IR OT SC SH DT ST TWD TWW O index

t-3 oinxchg Small 1-route Exchange ft−3 Short C 90 75% 61.27

obwxchgt-2 oinins Small 1-route Insert ft−2 Short C 90 75% 61.27

t-1 orr Large n-route Ruin-

recreate

ft−1 Short C 90 75% 61.27

3.3. Feature processing

Table 4 outlines the features of the operator sequences, including both

categorical and numerical data. The features of the original dataset are

processed for modelling by transforming categorical features into numerical

representations through label encoding. As numerical features present vary-

ing scales, normalisation is necessary to avoid potential biases. In this study,

min-max scaling is employed to normalise the numerical features, convert-

ing them to a standardised scale ranging from 0 to 1 while maintaining the

original distribution.

16

Table 4: A summary of features that describe operator sequences.

Feature groups Features Descriptions Feature types

Search stage feature Iter Index of iteration Numerical

Operator features

O index Index of operator Categorical

NS Neighhourbood size Categorical

IR Involved routes of operation Categorical

OT Operation type Categorical

SC Solution quality change Categorical

Instance features

SH Scheduling horizon Categorical

DT Distribution type Categorical

ST Service time Categorical

TWD Time window density Numerical

TWW Time window width Numerical

3.4. Data imbalance in the operator sequence data set

One distinct observation on the collected data is that the labels obwins, orr

and 2opt∗ dominate the categories of the extracted sequences (as shown in Ta-

ble 5), which leads to a seriously imbalanced classification problem (Chawla,

2009). This is due to their larger contributions to better performance on

VRPTW (Meng & Qu, 2021). The imbalanced samples present challenges to

learning models where there is a lack of enough data on the minority classes

for the learning (Batista et al., 2004).

Table 5: The appearance of each oi in Table 2 as the label of the extracted operator

sequences.

Operator oinxchg obwxchg oinins obwins orr 2opt∗

Appearance 3.8% 0.9% 3.8% 14.8% 18.8% 57.8%

17

Learning on imbalanced data has been widely investigated in recent re-

search (Zhou, 2013), (López et al., 2013), (Haixiang et al., 2017). Re-

sampling techniques, a class of pre-processing methods, showed to be promis-

ing in addressing data balance (Zhou, 2013). Re-sampling techniques can be

categorised into three groups as follows:

• Under-sampling methods, which select a portion of the majority classes

to achieve the distribution balance. The major drawback is that they

can discard potentially useful data.

• Over-sampling methods, which replicate some cases or generate new

cases from existing ones. This may likely lead to over-fitting or require

a clear structure in the imbalanced data to avoid introducing errors.

• Hybrid methods, which combine the above two methods.

This study investigates some of the most representative re-sampling meth-

ods, as shown in Table 6, for processing the imbalanced operator sequences.

The systematic evaluation aims to provide insights for the new machine learn-

ing task on the operator sequence data for automated algorithm design.

4. Learning from algorithmic components with LSTM

In solving sequence classification problems, recurrent neural networks

(RNNs) (Goodfellow et al., 2016), a family of neural networks, show great

promise by considering the context information of sequences (Rao et al.,

2018). The most well-known model in recurrent networks is long short-term

memory (LSTM) neural networks (Hochreiter & Schmidhuber, 1997) which

18

Table 6: Representative re-sampling methods.

Category Strategy

Under-sampling Random under-sampling (RU)

NearMiss (NM) (Mani & Zhang, 2003)

One-sided selection (OSS) (Kubat & Matwin, 1997)

Neighborhood Cleaning Rule (NCL) (Laurikkala, 2001)

Over-sampling Random over-sampling (RO)

Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002)

Borderline-SMOTE (BSMOTE) (Han et al., 2005)

Adaptive Synthetic Sampling (ADASYN) (He et al., 2008)

Hybrid SMOTEENN (Batista et al., 2004)

SMOTETomek (Batista et al., 2004)

can capture the long and short-term dependencies or temporal differences in

a sequence. This paper investigates LSTM neural networks for solving the

newly defined sequence classification task.

4.1. Preliminary fundamentals of LSTM

Recurrent neural networks (RNNs) (Mandic & Chambers, 2001) are a

class of sequence-based neural networks in modelling sequence learning tasks

(Nammous & Saeed, 2019). The structure of an RNN is similar to a standard

multi-layer network, with additional hidden units associated with the time

when connected (Jurgovsky et al., 2018). Such connection between hidden

units allows information from one step to be passed to the next, thus dis-

covering temporal correlations in a sequence of inputs. A major issue with

RNNs is that long-time lags are inaccessible in backpropagation, so it is hard

to handle long-term dependencies in sequences (Wan et al., 2020).

LSTM (Hochreiter & Schmidhuber, 1997) is a variant of RNNs, which

19

integrates a gating mechanism to resolve the long-term dependency issue, as

shown in Figure 1. Each LSTM cell retains an internal cell state to store the

memory of the last input, and a hidden state which stores the information of

the last output. Three gate units, i.e., input gate, output gate and forget gate

are introduced in LSTM to optionally let information through, the amount

of which is decided by the employed sigmoid activation function (output

between 0 and 1). The processed new information, i.e., cell state and hidden

state, is then carried over to the next time step.

Figure 1: The structure of a basic LSTM cell (Smagulova & James, 2020). At each time

step t, Xt is an input vector, Ct denotes the cell state vector, and ht is the hidden state

vector calculated based on Ct. Three gating units, i.e., input gate, forget gate and output

gate, return vectors denoted as it, ft and Ot, respectively.

With this sequence specialisation, RNNs (including LSTM) interpret the

input data as a data cube with three dimensions as shown in Figure 2.

This representation is different from conventional classifiers (including MLP)

which take a 2-dimensional matrix as the input, each row consisting of fea-

tures of each sequence.

20

Figure 2: Input data representation in RNNs (including LSTM) (Skydt et al., 2021).

4.2. LSTM for operator sequences

For the operator sequence classification task defined in Section 2.2, this

work proposes a four-layer LSTM as shown in Figure 3. The input data

are as shown in Figure 2, where each slice of the data tube represents one

operator sequence and the batch size is the number of sequences in the data.

An embedding layer turns integer representations of operators into dense

vectors of fixed size by capturing the underlying structure of the input data

and the relation between operators. In the context of neural networks, em-

bedding is a vector representation of discrete variables learned from the data.

It has been widely applied and performs well to represent words as dense vec-

tors in a variety of natural language processing (NLP) tasks (Levy & Gold-

berg, 2014), where neural embedding is more manageable with the lower

21

Figure 3: The structure of the proposed LSTM.

dimensions of the vectors for high-cardinality variables. The learned vectors

with neural embedding explicitly encode many linguistic patterns (Mikolov

et al., 2013). The embedding layer in the proposed LSTM model aims to

learn vector representations of the operators from the new data on algorithm

composition.

In the LSTM layer, the operator embeddings and other sequence features

are concatenated to feed into the LSTM cells. The output layer is a dense

layer with a SoftMax activation function which outputs the probability of

each class.

5. Findings of LSTM on automated algorithm composition

Intensive analysis has been conducted in the experiments to address two

main research issues, 1) assessing the performance of LSTM on the new

sequence classification task, and 2) identifying and analysing the key features

of operator sequences.

22

The investigations of the first research issue use operator sequences de-

scribed solely by the applied operators. LSTM is applied in the defined

sequence classification task to model operator sequences by capturing the

sequential nature of the data. To verify the predictive performance of LSTM

in the defined task, a set of baselines is used to compare against LSTM. The

selected baseline models are the conventional classifiers that are widely used

in text classification (Shah et al., 2020), including naive Bayes (NB), logis-

tic regression (LR), multi-layer perceptron (MLP) and random forest (RF).

Given the operator sequence data, conventional classifiers treat the operator

sequence as a feature vector and learn to model the data without consider-

ing the sequential dependencies between these operators, while LSTM can

capture the dependencies between operators within the sequence. The com-

parative analysis between LSTM and conventional classifiers thus presents

insights into the performance of different learning models for the newly de-

fined sequence classification task, while also revealing knowledge of hidden

sequential relations between operators to support algorithm design.

Towards the first research issue, Section 5.1 presents the comparative

analysis of the proposed LSTM model against baselines. An LSTM model

with no embedding layer (denoted as LSTM-basic) is studied to show the ef-

fects of embeddings. The influence of different resampling methods in Section

5.2 and the length of operator sequences in Section 5.3 are also investigated.

For the second research issue, Section 5.4 analyses a set of features de-

scribing operator sequences with LSTM to identify useful information to

support automated algorithm design.

Traditionally, accuracy is a widely used performance metric in classifica-

23

tion tasks (López et al., 2013), however, not an appropriate measure when

learning on imbalanced data (Chawla, 2009). The area under the curve

(AUC) (Swets, 1988) is used to evaluate the performance of the models.

5.1. Performance comparison of learning models

The original data set is split into 70% for training and 30% for testing.

Since the extracted operator sequence data is highly imbalanced, the data

set is processed with re-sampling methods, as shown in Table 6, to obtain

balanced training data. In all cases, the aim is to try to obtain balanced

training data. The testing data is used to evaluate the performance of learn-

ing models. Table 7 presents the stats of the re-sampled training data and

testing data.

To avoid potential over-fitting and consider the computational efficiency,

the hyper-parameters in the learning models have been tuned to obtain the

best performance in terms of AUC on the training data. Table 8 shows the

average AUC of 10 runs of the six classifiers on each data set. To com-

pare the overall performance of these six classifiers, their average ranking

according to their performance is compared. Overall, LSTM achieves the

best performance. RF is worse than LSTM but still superior to other clas-

sifiers. Among the other classifiers, LSTM-basic obtain better performance,

followed by MLP, NB and LR, respectively.

To investigate further the LSTM and RF and also the contributions of the

embedding layer in LSTM, the Mann-Whitney-Wilcoxon test is conducted

on the LSTM against LSTM-basic and RF, as shown in Table 9. It can

be observed that the LSTM with an embedding layer is statistically better,

and can learn a proper representation of the operators in the sequences to

24

Table 7: Data size of re-sampled training data and testing data.

Class Re-sampling methods Training data size

oinxchg obwxchg oinins obwins orr 2-opt∗ Total

Original 12178 2853 12133 47419 60625 181199 316407

Under

RU 2853 2853 2853 2853 2853 2853 17118

NM 2853 2853 2853 2853 2853 2853 17118

OSS 6820 2853 6766 29570 39494 148099 233602

NCL 12178 2853 12133 47419 60625 115757 250965

Over

RO 181199 181199 181199 181199 181199 181199 1087194

SMOTE 95680 33232 179983 151639 159881 179983 800398

BSMOTE 55583 8746 55085 147419 158250 180355 605438

ADASYN 96286 33251 97522 153951 148195 179965 709170

Hybrid
SMOTEENN 93742 32852 92661 132789 126747 14468 493259

SMOTETomek 95498 33190 94327 151520 159161 178720 712416

Testing data size

Original 5021 1153 5138 19567 24542 80181 135602

25

Table 8: The AUC results of different learning models on data sets processed by different

re-sampling methods.

Models RU NM OSS NCL

NB 0.5714 0.5562 0.6014 0.6012

LR 0.5677 0.5679 0.6002 0.6009

MLP 0.5714 0.5300 0.6318 0.6401

RF 0.6120 0.5573 0.6407 0.6425

LSTM-basic 0.6088 0.5407 0.6479 0.6492

LSTM 0.6230 0.5554 0.6536 0.6552

Models RO SMOTE BSMOTE ADASYN

NB 0.5750 0.5966 0.5973 0.5972

LR 0.5726 0.5939 0.5942 0.5942

MLP 0.5869 0.6214 0.6243 0.6208

RF 0.6179 0.6256 0.6282 0.6251

LSTM-basic 0.5703 0.6308 0.6354 0.6305

LSTM 0.5956 0.6347 0.6393 0.6344

Models SMOTEENN SMOTETomek Original

NB 0.5847 0.5967 0.6009

LR 0.5831 0.5941 0.5994

MLP 0.6123 0.6206 0.6368

RF 0.6225 0.6255 0.6436

LSTM-basic 0.6214 0.6312 0.6510

LSTM 0.6245 0.6360 0.6541

26

Table 9: Pairwise performance comparison on the LSTM with LSTM-basic and RF using

the Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicates if the LSTM is significantly

better than, worse than, or statistically equivalent to LSTM-basic and RF, respectively.

Resampling methods RU NM OSS NCL

LSTM↔LSTM-basic + + + +

LSTM↔RF + ∼ + +

Resampling methods RO SMOTE BSMOTE ADASYN

LSTM↔LSTM-basic + + + +

LSTM↔RF - + + +

Resampling methods SMOTEENN SMOTETomek Original

LSTM↔LSTM-basic + + +

LSTM↔RF + + +

improve the prediction performance. LSTM also outperforms the conven-

tional classifier, due to its sequence architecture which captures features in

modelling long texts.

5.2. Effects of re-sampling methods

To investigate the impact of re-sampling data on the learning models,

Figure 4 presents the comparisons of AUC for RF and LSTM using different

re-sampling methods in each data set. None of the re-sampling methods

shows an improvement in the performance with using the original data set.

However, LSTM obtains similar performance on the data sets processed by

using OSS and NCL to the original data. Among the selected re-sampling

methods, NCL is shown to be the best to process the data set for learning

models to obtain the best overall performance. The over-sampling methods

and hybrid re-sampling methods, except RO, have a similar impact on the

operator sequence data.

27

Figure 4: Performance comparison of RF and LSTM on the data sets processed with

different re-sampling methods.

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68

Or
igi
na
l

RU NM OS
S

NC
L RO

SM
OT
E

BS
MO
TE

AD
AS
YN

SM
OT
EE
NN

SM
OT
ET
om
ek

A
U

C

Re-sampling methods

RF
LSTM

The over-sampling methods introduce new samples to the data to add

significantly more information to the minority class examples. However, RO

makes exact copies of the minority class cases, thus only introducing re-

dundant information to the data. The syncretization-based over-sampling

methods (e.g., SMOTE) utilise the inter-correlations rather than temporal

inner-correlations of operator sequences. Therefore, the extracted knowledge

by the learning models from the newly introduced data fails to reveal the

real knowledge of algorithmic composition and thus cannot generalise to the

testing data.

Compared with over-sampling methods, under-sampling methods seem

more suitable for processing the imbalanced operator sequence data since

they would not introduce wrong or useless information to the data. How-

ever, after under-sampling methods (or over-sampling), there is a limited

28

amount of data. With only a limited amount of data observed by learning

models, the extracted knowledge has a limited level of generality in testing.

The performance of the NM method is not satisfying, indicating it failed to

identify the underlying structure in the high-dimensional operator sequence

data. OSS and NCL select a subset of data with data cleaning procedures.

However, the resulting data sets are still highly imbalanced, as shown in Ta-

ble 7. Among these under-sampling methods, RU seems more suitable for

operator sequences, resulting in a balanced data set.

To successfully apply the under-sampling methods, the RU under-sampling

method is further examined on the operator sequence data to strike a balance

in the training data while maintaining a suitable information loss. Table 10

presents the training data with different imbalance levels after applying RU.

RF and LSTM are then trained with the RU-processed training data,

evaluations are shown in Figure 5. Unsurprisingly, the learning models ob-

tain better performance on more imbalanced data. It is interesting to observe

in Figure 5, that from balanced data (i.e., RU1) to the data with an imbal-

ance level of 2:1 (i.e., RU2 of majority: minority ratio), the learning models

obtain significant performance improvement. The improvement of model

performance reduces along with increasing imbalance levels. Considering

the trade-off between the overall prediction performance and data imbalance

level, RU2 is used as a suitable re-sampling method for data pre-processing

in this study.

5.3. Impact from the length of operator sequences

The impacts from different operator sequence length settings are inves-

tigated by comparing the performance of the selected learning models on

29

Table 10: Sample size of the training data re-sampled by RU with different imbalance

levels.

Data set Training data size Imbalance level

oinxchg obwxchg oinins obwins orr 2-opt∗ Total 2-opt∗ : obwxchg

RU1 2853 2853 2853 2853 2853 2853 17118 1 : 1

RU2 5706 2853 5706 5706 5706 5706 31383 2 : 1

RU3 8559 2853 8559 8559 8559 8559 45648 3 : 1

RU4 11412 2853 11412 11412 11412 11412 59913 4 : 1

RU5 12178 2853 12133 14265 14265 14265 69959 5 : 1

Figure 5: The performance change of RF and LSTM on the data sets processed by RU

with different data imbalance levels. RU1, RU2, RU3, RU4 and RU5 denote RU with the

ratio of majority class to minority class 1:1, 2:1, 3:1, 4:1 and 5:1, respectively.

0.59
0.60
0.61
0.62
0.63
0.64
0.65

RU1 RU2 RU3 RU4 RU5

A
U

C

RU with different imbalance level

RF LSTM

30

Figure 6: The comparison of learning models in terms of the AUC performance.

0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70

10 20 30 40 50

A
U

C

Sequence length setting

NB LR MLP RF LSTM-basic LSTM

different length settings (i.e., Y in Figure 2) in the range of {10, 20, 30, 40,

50}. The 70% data is processed by RU2 with an imbalance level of 2:1 as

the training data.

Figure 6 shows the AUC performance of learning models on the operator

sequence data set with different length settings. Among the six classifiers

in this study, LSTM achieves the best performance on operator sequences

with different length settings. In addition, its performance increases with

the increase of the length. This further justifies the effectiveness of LSTM,

especially for handling long operator sequences.

The conventional classifiers perform better on the operator sequences of

length 30. This suggests their limited learning ability when the number of

features increases. Among the conventional classifiers, RF achieves the best

performance in different sequence lengths and thus will be used for further

investigations. The operator sequence length is set as 30 in Section 5.4.

31

5.4. Investigations on features of operator sequences

This section investigates the features of operator sequences in Table 3 us-

ing RF and LSTM models. The experimental study uses operator sequences

with a length of 30. The 70% data is processed by RU2 with an imbalance

level of 2:1 as the training data.

5.4.1. Effects of each feature

To investigate the impact of each feature, RF and LSTM are evaluated on

the operator sequences described by features in Table 4, compared with the

baseline original data (described by the applied operator O index only), re-

sults shown in Figure 7. Both RF and LSTM perform better with additional

features. Overall, LSTM outperforms RF on the same data set. For LSTM,

solution quality change SC improves the performance the most, followed by

search stage Iter. With operator neighbourhood size NS, LSTM is slightly

worse than when it is applied to the original data. RF performs the best on

the data with time window width TWW , followed by the SC.

The Mann–Whitney–Wilcoxon test with a 95% confidence level is con-

ducted in pairwise comparisons between the performance on the original

data (i.e., O index) and data with one more feature. As shown in Table

11, for RF, the additional features to the original data significantly improve

its prediction performance. For LSTM, some features contribute to perfor-

mance improvement. These include the search stage, instance features (i.e.,

scheduling horizon and time window width), and the solution quality change

after the selected operators.

32

Figure 7: AUC performance comparison of learning models on data sets with different

features in Table 4.

0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73

O_index
O_index with Iter
O_index with DT
O_index with SH
O_index with ST

O_index with TWD
O_index with TWW

O_index with SC
O_index with NS
O_index with IR

O_index with OT

AUC

D
at

a
se

ts
 w

ith
 d

iff
er

en
t f

ea
tu

re
s

LSTM RF

Table 11: Comparison of model performance on the data with O index and the data with

additional features, using the Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicate if

O index with an additional feature is significantly better than, worse than, or statistically

equivalent to data with just O index, respectively.

RF LSTM

O index with Iter ↔O index + +

O index with DT ↔O index + ∼

O index with SH ↔O index + +

O index with ST ↔O index + ∼

O index with TWD ↔O index + ∼

O index with TWW ↔O index + +

O index with SC ↔O index + +

O index with NS ↔O index + ∼

O index with IR ↔O index + ∼

O index with OT ↔O index + ∼

33

Table 12: The top 10 important features found by RF.

Rank Importance Feature group Feature description

1 0.0765 Search stage feature Index of iteration

2 0.0699 Instance feature Time window width

3 0.0641 Instance feature Scheduling horizon

4 0.0359 Operator feature Operator index of the last operator

5 0.0168 Operator feature Neighbourhood size of the last operator

6 0.0167 Operator feature Operator index of the second last operator

7 0.0154 Operator feature Solution quality change of the last operator

8 0.0133 Operator feature Operation type of the last operator

9 0.0121 Operator feature Operator index of the third last operator

10 0.0114 Operator feature Solution quality change of the second last operator

5.4.2. Importance of the features

Further analysis is conducted to investigate the feature importance of

the learning models. Table 12 presents the top 10 most important features

identified by RF. The search stage feature Iter is the most important feature

by RF. Similar to the observation on LSTM in Table 11, scheduling horizon

and time window width are also identified as important features by RF. It

is worth noting that RF identifies that the most recently used operators and

operator features are important for the prediction. This suggests that its

better performance compared with the conventional classifiers may be due

to its ability to identify the correlation between operators in the sequences.

To analyse the remaining features, RF and LSTM are evaluated on the

data set with all features and compared with their performance on the same

operator sequence set with only the top 10 important features in Table 12.

Figure 8 shows that the top 10 important features can significantly improve

34

Figure 8: Comparison of different feature sets using the performance of learning models.

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

O_index O_index with top10 O_index with all

A
U

C

Data sets with different features

RF
LSTM

the performance of RF and LSTM. However, both models obtain further

better performance with all the features.

The Mann–Whitney–Wilcoxon test with a 95% confidence level on dif-

ferent feature sets is shown in Table 13, confirming the effectiveness of the

important feature set for both models. RF on the data with all features is

significantly better than the data with important features. This indicates

that the less important features are also useful for RF. However, for LSTM,

there is no statistical significance in using all features compared with us-

ing only the important features. This indicates that LSTM can learn useful

knowledge on the operator sequences with only a smaller subset of effective

features.

35

Table 13: Performance comparison of RF and LSTM on operator sequence data with dif-

ferent feature sets, using the Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicates that

O index with important features is significantly better than, worse than, or statistically

equivalent to O index with other features, respectively.

RF LSTM

O index with important ↔ O index + +

O index with important ↔ O index with all - ∼

5.4.3. Discussions of the features for operator sequences

Search stage information. The search stage feature is identified as the

most important feature by RF. It also contributes to significant improvement

for LSTM, as shown in Figure 7. This suggests that in different search stages,

the effective composition of algorithmic components may follow certain dif-

ferent patterns, thus justifying the use of GCOP methods to adapt to the

search stages while flexibly composing algorithmic components. In addition,

such patterns in operator sequences may be hard to observe or be interpreted

directly but can be explored by machine learning models, supporting the use

of machine learning models in automated algorithm composition.

Instance features. In the literature, the studies which generalise offline

learned knowledge to solve unseen VRPTW instances mainly focus on cus-

tomer type and scheduling horizon. Among the instance features involved

in this study, time window widths are identified as more important features

for both RF and LSTM. This suggests a potential difference in the hidden

knowledge of algorithmic compositions for problem instances with distinct

time window widths and scheduling horizons. To achieve a higher level of

generality in algorithm design for solving VRPTW these two important fea-

36

tures should be considered.

Operator sequences. Both RF and LSTM perform better with longer

operator sequences, but LSTM is better than RF. Particularly, RF identifies

that the recent operators are more important than the previously used op-

erators for prediction. This confirms again the sequential relations between

operators in effective algorithmic compositions. In the search, the recently

visited neighbourhoods are more important for determining the next neigh-

bourhood.

Operator features. Of the investigated operator-related features, the

most important is the solution quality change. The other three operator

features, i.e., neighbourhood size, involved routes and operation type, make

no contribution to improving the performance of LSTM. However, they are

useful features for RF. These three features could be seen as important pa-

rameters when designing new operators. Investigations of operators with

various settings based on these three features may reveal new knowledge for

algorithm design in our future research.

6. Conclusions and future workds

6.1. Conclusions

Various learning methods have been used to automate the algorithm de-

sign process in the literature. Within a unified AutoGCOP algorithm de-

sign framework which supports the composition of elementary algorithmic

components, this paper investigated machine learning techniques for auto-

mated algorithm design. The aim is to gain insightful knowledge from the

effective algorithmic compositions to forecast the behaviour of algorithmic

37

components, thus supporting algorithm design. Overall, this study makes a

valuable step towards integrating machine learning into automated algorithm

design.

The algorithm design problem of determining algorithmic components

to use has been defined as a new sequence classification problem. Machine

learning methods have been studied to learn a mapping from sub-sequences of

algorithmic compositions to the algorithmic component to be applied. This

newly defined machine learning task thus supports the automated design

of new unseen local search algorithms. With the AutoGCOP framework, a

considerable number of new algorithmic compositions can be automatically

generated for further investigations for solving VRPTW and other optimisa-

tion problems.

In predicting components in algorithmic composition, the proposed LSTM

model was compared against commonly used conventional classifiers. LSTM

is shown to perform better at capturing the sequential relations in algorith-

mic compositions due to its sequence specialisation of the network structure.

To address the issue of highly imbalanced algorithmic composition data, the

learning models have been examined using data sets processed with several

commonly used re-sampling methods. LSTM is shown to be the best machine

learning method due to its robust performance on the defined prediction task

in forecasting the behaviour of algorithmic components.

Furthermore, various features utilised in automated composition have

been analysed with machine learning models. The results confirm the ef-

fectiveness of the search stage, operator features and instance features in

designing local search algorithms. Certain VRPTW instance features, par-

38

ticularly the scheduling horizon and time window width, have been identified

as important features for determining suitable algorithmic components. The

search stage, as a general feature, can be a useful indicator when determin-

ing suitable algorithmic components in algorithm design for different problem

domains. Solution quality change, which represents the performance of the

applied algorithmic components, can also be effectively utilised for automated

design.

6.2. Discussion on the practical impacts of automated algorithm design

Automated algorithm design is attracting increasing research attention in

solving complex COPs (Yi et al., 2022). It should be noted that the impact

of automated algorithm design is not limited to optimisation research but

has much wider practical perspectives.

Improved algorithm design. The performance of manually designed

algorithms highly relies on the experience and effort of human experts, who

may only consider a limited number of designs, limiting the exploration of

potential algorithms (Hoos, 2008). Automation in algorithm design enables

the exploration of a larger scope of candidate algorithms, some of which may

never be considered by manual designs (Meng & Qu, 2021). Therefore, au-

tomated algorithm design can bring new and effective algorithms efficiently,

leading to cost-efficient and better solutions for industry and business.

Better use of human resources. The design of high-performing meta-

heuristics involves extensive domain knowledge and efforts from human ex-

perts. Automation in algorithm design is an increasing demand from industry

and business for removing the heavy reliance on human involvement (Pillay

et al., 2018). By automating the design process, algorithm designers can

39

be freed from the tedious and time-consuming aspects of algorithm design

and apply their expertise towards more creative tasks (Burke et al., 2009).

They can provide valuable insights into the problems where optimisation is

critical, make informed decisions about algorithmic choices (such as decid-

ing on search frameworks), and align themselves with industry requirements

(Hoos, 2008). This ultimately leads to cost savings and improved operational

efficiency for industry and business.

Adaptability across domains. Effective meta-heuristics are demand-

ing in various COPs, such as job shop scheduling, knapsack problem, person-

nel scheduling, timetabling, vehicle routing, and many others, as well as their

extensions with various real-world constraints and features (Qu et al., 2020).

While much time and effort have been invested in designing effective heuris-

tics, most heuristics proposed in the literature are specific to certain problem

instances or stages of problem-solving (Yi et al., 2022). The automated al-

gorithm design can greatly reduce the costs of the designing algorithm that

can be applied across multiple problem domains (Burke et al., 2009). For

example, frameworks like HyFlex (Ochoa et al., 2012) and EvoHyp (Pillay &

Beckedahl, 2017) are proposed for the automated composition of algorithms

that can be applied to different problem domains with little development

effort. This allows industry and business to obtain tailored solutions for

different optimisation use cases efficiently.

This study mainly contributes to the field of automated algorithm design

by introducing a machine learning task to support the exploration of the

hidden knowledge in algorithmic compositions with machine learning, thus

supporting effective algorithm design. The widely investigated VRPTW is

40

used as a testbed for the investigations of machine learning methods. While

the main contributions are mainly on the algorithm design aspects, this re-

search also holds several practical advantages in the context of algorithm

design.

Insights into the use of machine learning. The utilisation of ma-

chine learning in algorithm design can lead to more efficient and effective

solutions (Karimi-Mamaghan et al., 2022). By introducing the newly de-

fined machine learning task, this study provides algorithm designers with a

new direction of utilising machine learning in automated algorithm design.

In addition, this study compares several widely used machine learning mod-

els in the defined task, providing algorithm designers insights into suitable

techniques and allowing them to focus on higher-level decision-making.

Insights into algorithm designs for VRPs. Identifying useful fea-

tures of algorithm design can assist in learning and decision-making in al-

gorithm design (Yi et al., 2023). This study identifies the important search

stage features and instance features for algorithm design on VRPTW. These

key features can be used to support algorithm design for solving VRPTW

and their extensions with various real-world constraints and features, leading

to efficient route planning and scheduling.

Impacts beyond VRPs. The investigations of this study have broader

practical benefits that extend beyond VRPs. The investigations of algo-

rithmic compositions, built upon the general GCOP model (Qu et al., 2020),

operate in a distinct space from the solution space of the specific optimisation

problem being addressed. Therefore, the methodology applied to analyse al-

gorithmic compositions can be extended and applied to other domains, which

41

can be beneficial for industries and businesses that operate beyond VRPs.

6.3. Future works

Further investigations of algorithmic compositions. This study

uncovers the sequential dependencies hidden in the operator sequences by

evaluating LSTM against conventional classifiers. These findings can serve

as evidence to support future investigations into the sequential behaviour

of operators in effective algorithmic compositions. Deep learning techniques

that are widely used in sequential data (Kowsari et al., 2019) may also yield

promising results in the defined sequence classification task.

Evaluation of automatically designed algorithms. The findings

of this study establish a solid foundation for the potential implementation

of sequence classification models in automated algorithm design. A future

work direction is to incorporate the proposed machine learning task as an ele-

ment of automated algorithms and evaluate them against the state-of-the-art

manual methods for solving VRPTW (Vidal et al., 2013). This comparative

analysis would provide valuable insights into the strengths and weaknesses of

the proposed machine learning task and techniques in this study incorporated

into evolutionary computation and meta-heuristics.

Investigation of different VRP scenarios. Effective algorithms are

demanding for solving VRPs of varying scales and variants, especially in

handling real-world scenarios (Kytöjoki et al., 2007). Building upon this, a

promising extension of this study is to examine the variations in algorith-

mic compositions for VRPTW instances of diverse sizes and variants (Vidal

et al., 2013) with machine learning. Potential knowledge can be identified to

42

support effective algorithm design across different problem scales and com-

plexities.

Extension to problem domains beyond VRPs. It is important to

note that the proposed sequence classification task for automated algorithm

design is not limited to VRP alone. The basic algorithmic components in

GCOP are not tailored to any specific problems but rather for various prob-

lems with minimal development effort. By simply replacing the problem-

specific algorithmic components and keeping the same basic components,

the underlying same methodology of this study can be applied to different

problem domains. In the future, the proposed machine learning task can

guide further exploration of effective algorithmic compositions across differ-

ent domains.

Acknowledgements

This work was supported by the School of Computer Science, University

of Nottingham.

References

Asta, S., & Özcan, E. (2014). An apprenticeship learning hyper-heuristic

for vehicle routing in HyFlex. In 2014 IEEE symposium on evolving and

autonomous learning systems (EALS) (pp. 65–72). IEEE.

Asta, S., Özcan, E., Parkes, A. J., & Etaner-Uyar, A. Ş. (2013). Generalizing

hyper-heuristics via apprenticeship learning. In European Conference on

Evolutionary Computation in Combinatorial Optimization (pp. 169–178).

Springer.

43

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic

programming . Springer.

Batista, G. E., Prati, R. C., & Monard, M. C. (2004). A study of the

behavior of several methods for balancing machine learning training data.

ACM SIGKDD explorations newsletter , 6 , 20–29.

Bezerra, L. C., López-Ibánez, M., & Stützle, T. (2015). Automatic

component-wise design of multiobjective evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, 20 , 403–417.

Breiman, L. (2001). Random forests. Machine learning , 45 , 5–32.

Burke, E. K., Hyde, M. R., & Kendall, G. (2011). Grammatical evolution of

local search heuristics. IEEE Transactions on Evolutionary Computation,

16 , 406–417.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Woodward,

J. R. (2009). Exploring hyper-heuristic methodologies with genetic pro-

gramming. Computational intelligence: Collaboration, fusion and emer-

gence, (pp. 177–201).

Burke, E. K., Kendall, G., & Soubeiga, E. (2003). A tabu-search hyper-

heuristic for timetabling and rostering. Journal of heuristics , 9 , 451–470.

Chakhlevitch, K., & Cowling, P. (2005). Choosing the fittest subset of low

level heuristics in a hyperheuristic framework. In European Conference

on Evolutionary Computation in Combinatorial Optimization (pp. 23–33).

Springer.

44

Chawla, N. V. (2009). Data mining for imbalanced datasets: An overview.

Data mining and knowledge discovery handbook , (pp. 875–886).

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002).

SMOTE: synthetic minority over-sampling technique. Journal of artificial

intelligence research, 16 , 321–357.

Chen, H., Wu, L., Chen, J., Lu, W., & Ding, J. (2022). A comparative

study of automated legal text classification using random forests and deep

learning. Information Processing & Management , 59 , 102798.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., & Vigo, D. (2007). Vehicle

routing. Handbooks in operations research and management science, 14 ,

367–428.

Cowling, P., & Chakhlevitch, K. (2003). Hyperheuristics for managing a

large collection of low level heuristics to schedule personnel. In The 2003

Congress on Evolutionary Computation, 2003. CEC’03. (pp. 1214–1221).

IEEE volume 2.

Cowling, P., Kendall, G., & Soubeiga, E. (2000). A hyperheuristic approach

to scheduling a sales summit. In International Conference on the Practice

and Theory of Automated Timetabling (pp. 176–190). Springer.

Crammer, K., & Singer, Y. (2002). On the learnability and design of output

codes for multiclass problems. Machine learning , 47 , 201–233.

Di Gaspero, L., & Urli, T. (2011). A reinforcement learning approach for the

cross-domain heuristic search challenge. In Proceedings of the 9th Meta-

heuristics International Conference (MIC 2011), Udine, Italy .

45

Di Gaspero, L., & Urli, T. (2012). Evaluation of a family of reinforcement

learning cross-domain optimization heuristics. In International Conference

on Learning and Intelligent Optimization (pp. 384–389). Springer.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial

neural network classification models: a methodology review. Journal of

biomedical informatics , 35 , 352–359.

Ferreira, A. S., Gonçalves, R. A., & Pozo, A. (2017). A multi-armed bandit

selection strategy for hyper-heuristics. In 2017 IEEE Congress on Evolu-

tionary Computation (CEC) (pp. 525–532). IEEE.

Fisher, M., & Fisher, M. (1995). Chapter 1 vehicle routing. Handbooks in

Operations Research and Management Science, 8 , 1–33.

Franzin, A., & Stützle, T. (2019). Revisiting simulated annealing: A

component-based analysis. Computers & Operations Research, 104 , 191–

206.

Fukunaga, A. S. (2008). Automated discovery of local search heuristics for

satisfiability testing. Evolutionary computation, 16 , 31–61.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning . MIT

press.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing,

G. (2017). Learning from class-imbalanced data: Review of methods and

applications. Expert Systems with Applications , 73 , 220–239.

46

Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: a new

over-sampling method in imbalanced data sets learning. In International

conference on intelligent computing (pp. 878–887). Springer.

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic

sampling approach for imbalanced learning. In 2008 IEEE international

joint conference on neural networks (IEEE world congress on computa-

tional intelligence) (pp. 1322–1328). IEEE.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9 , 1735–1780.

Hoos, H. H. (2008). Computer-aided design of high-performance algorithms .

Technical Report Technical Report TR-2008-16, University of British

Columbia, Department of Computer Science.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configu-

ration based on local search. In Proceedings of the 22nd national conference

on Artificial intelligence-Volume 2 (pp. 1152–1157).

Jacobsen-Grocott, J., Mei, Y., Chen, G., & Zhang, M. (2017). Evolving

heuristics for dynamic vehicle routing with time windows using genetic pro-

gramming. In 2017 IEEE Congress on Evolutionary Computation (CEC)

(pp. 1948–1955). IEEE.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-

Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card

fraud detection. Expert Systems with Applications , 100 , 234–245.

47

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan,

A. M., & Talbi, E.-G. (2022). Machine learning at the service of meta-

heuristics for solving combinatorial optimization problems: A state-of-the-

art. European Journal of Operational Research, 296 , 393–422.

Khamassi, I., Hammami, M., & Ghédira, K. (2011). Ant-Q hyper-heuristic

approach for solving 2-dimensional cutting stock problem. In 2011 IEEE

Symposium on Swarm Intelligence (pp. 1–7). IEEE.

Kheiri, A., & Keedwell, E. (2015). A sequence-based selection hyper-heuristic

utilising a hidden Markov model. In Proceedings of the 2015 Annual Con-

ference on Genetic and Evolutionary Computation (pp. 417–424). ACM.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., & Leyton-Brown, K. (2016).

SATenstein: Automatically building local search SAT solvers from compo-

nents. Artificial Intelligence, 232 , 20–42.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., &

Brown, D. (2019). Text classification algorithms: A survey. Information,

10 , 150.

Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training

sets: one-sided selection. In ICML (pp. 179–186). Citeseer volume 97.

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient

variable neighborhood search heuristic for very large scale vehicle routing

problems. Computers & operations research, 34 , 2743–2757.

Laurikkala, J. (2001). Improving identification of difficult small classes by

48

balancing class distribution. In Conference on Artificial Intelligence in

Medicine in Europe (pp. 63–66). Springer.

Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit ma-

trix factorization. Advances in neural information processing systems , 27 ,

2177–2185.

López, V., Fernández, A., Garćıa, S., Palade, V., & Herrera, F. (2013).

An insight into classification with imbalanced data: Empirical results and

current trends on using data intrinsic characteristics. Information sciences ,

250 , 113–141.

Lopez-Ibanez, M., & Stutzle, T. (2012). The automatic design of multiob-

jective ant colony optimization algorithms. IEEE Transactions on Evolu-

tionary Computation, 16 , 861–875.

Mandic, D., & Chambers, J. (2001). Recurrent neural networks for prediction:

learning algorithms, architectures and stability . Wiley.

Mani, I., & Zhang, I. (2003). kNN approach to unbalanced data distributions:

a case study involving information extraction. In Proceedings of workshop

on learning from imbalanced datasets . ICML United States volume 126.

Mascia, F., López-Ibánez, M., Dubois-Lacoste, J., & Stützle, T. (2013). From

grammars to parameters: Automatic iterated greedy design for the permu-

tation flow-shop problem with weighted tardiness. In International Con-

ference on Learning and Intelligent Optimization (pp. 321–334). Springer.

McClymont, K., & Keedwell, E. C. (2011). Markov chain hyper-heuristic

(MCHH): an online selective hyper-heuristic for multi-objective continuous

49

problems. In Proceedings of the 13th annual conference on Genetic and

evolutionary computation (pp. 2003–2010). ACM.

Meng, W., & Qu, R. (2021). Automated design of search algorithms: Learn-

ing on algorithmic components. Expert Systems with Applications , 185 ,

115493.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-

tributed representations of words and phrases and their compositionality.

In Advances in neural information processing systems (pp. 3111–3119).

Miranda, P. B., Prudêncio, R. B., & Pappa, G. L. (2017). H3AD: A hybrid

hyper-heuristic for algorithm design. Information Sciences , 414 , 340–354.

Mısır, M., Verbeeck, K., De Causmaecker, P., & Berghe, G. V. (2013). An

investigation on the generality level of selection hyper-heuristics under dif-

ferent empirical conditions. Applied Soft Computing , 13 , 3335–3353.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression.

Neurocomputing , 2 , 183–197.

Nammous, M. K., & Saeed, K. (2019). Natural language processing: Speaker,

language, and gender identification with LSTM. In Advanced Computing

and Systems for Security (pp. 143–156). Springer.

Nareyek, A. (2003). Choosing search heuristics by non-stationary reinforce-

ment learning. In Metaheuristics: Computer decision-making (pp. 523–

544). Springer.

50

Nguyen, S., Zhang, M., Johnston, M., & Tan, K. C. (2012). A computational

study of representations in genetic programming to evolve dispatching rules

for the job shop scheduling problem. IEEE Transactions on Evolutionary

Computation, 17 , 621–639.

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J.,

Gendreau, M., Kendall, G., McCollum, B., Parkes, A. J., Petrovic, S.

et al. (2012). Hyflex: A benchmark framework for cross-domain heuristic

search. In Evolutionary Computation in Combinatorial Optimization: 12th

European Conference, EvoCOP 2012, Málaga, Spain, April 11-13, 2012.

Proceedings 12 (pp. 136–147). Springer.

Oltean, M. (2005). Evolving evolutionary algorithms using linear genetic

programming. Evolutionary Computation, 13 , 387–410.

Özcan, E., Misir, M., Ochoa, G., & Burke, E. K. (2012). A reinforcement

learning: great-deluge hyper-heuristic for examination timetabling. In

Modeling, Analysis, and Applications in Metaheuristic Computing: Ad-

vancements and Trends (pp. 34–55). IGI Global.

Pagnozzi, F., & Stützle, T. (2019). Automatic design of hybrid stochas-

tic local search algorithms for permutation flowshop problems. European

journal of operational research, 276 , 409–421.

Pickardt, C., Branke, J., Hildebrandt, T., Heger, J., & Scholz-Reiter, B.

(2010). Generating dispatching rules for semiconductor manufacturing to

minimize weighted tardiness. In Proceedings of the 2010 Winter Simulation

Conference (pp. 2504–2515). IEEE.

51

Pillay, N., & Beckedahl, D. (2017). EvoHyp-a java toolkit for evolution-

ary algorithm hyper-heuristics. In 2017 IEEE Congress on Evolutionary

Computation (CEC) (pp. 2706–2713). IEEE.

Pillay, N., & Özcan, E. (2019). Automated generation of constructive order-

ing heuristics for educational timetabling. Annals of Operations Research,

275 , 181–208.

Pillay, N., & Qu, R. (2018). Hyper-Heuristics: Theory and Applications .

Springer.

Pillay, N., Qu, R., Srinivasan, D., Hammer, B., & Sorensen, K. (2018). Auto-

mated design of machine learning and search algorithms [Guest Editorial].

IEEE Computational Intelligence Magazine, 13 , 16–17.

Qu, R. (2021). Recent developments of automated machine learning and

search techniques. In Automated Design of Machine Learning and Search

Algorithms (pp. 1–9). Springer.

Qu, R., Kendall, G., & Pillay, N. (2020). The general combinatorial optimiza-

tion problem: Towards automated algorithm design. IEEE Computational

Intelligence Magazine, 15 , 14–23.

Rao, G., Huang, W., Feng, Z., & Cong, Q. (2018). LSTM with sentence rep-

resentations for document-level sentiment classification. Neurocomputing ,

308 , 49–57.

Razno, M. (2019). Machine learning text classification model with NLP

approach. Computational Linguistics and Intelligent Systems , 2 , 71–73.

52

Remde, S., Cowling, P., Dahal, K., Colledge, N., & Selensky, E. (2012). An

empirical study of hyperheuristics for managing very large sets of low level

heuristics. Journal of the operational research society , 63 , 392–405.

Rish, I. et al. (2001). An empirical study of the naive Bayes classifier. In

IJCAI 2001 workshop on empirical methods in artificial intelligence (pp.

41–46). volume 3.

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2013). Grammatical evolu-

tion hyper-heuristic for combinatorial optimization problems. IEEE Trans-

actions on Evolutionary Computation, 17 , 840–861.

Sabar, N. R., Zhang, X. J., & Song, A. (2015). A math-hyper-heuristic

approach for large-scale vehicle routing problems with time windows. In

2015 IEEE congress on evolutionary computation (CEC) (pp. 830–837).

IEEE.

Shah, K., Patel, H., Sanghvi, D., & Shah, M. (2020). A comparative analysis

of logistic regression, random forest and knn models for the text classifi-

cation. Augmented Human Research, 5 , 1–16.

Skydt, M. R., Bang, M., & Shaker, H. R. (2021). A probabilistic sequence

classification approach for early fault prediction in distribution grids using

long short-term memory neural networks. Measurement , 170 , 108691.

Smagulova, K., & James, A. P. (2020). Overview of long short-term memory

neural networks. In Deep Learning Classifiers with Memristive Networks

(pp. 139–153). Springer.

53

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling

problems with time window constraints. Operations research, 35 , 254–265.

Soria-Alcaraz, J. A., Ochoa, G., Sotelo-Figeroa, M. A., & Burke, E. K. (2017).

A methodology for determining an effective subset of heuristics in selection

hyper-heuristics. European Journal of Operational Research, 260 , 972–983.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science,

240 , 1285–1293.

Thabtah, F., & Cowling, P. (2008). Mining the data from a hyperheuristic

approach using associative classification. Expert systems with applications ,

34 , 1093–1101.

Tyasnurita, R., Özcan, E., & John, R. (2017). Learning heuristic selection

using a time delay neural network for open vehicle routing. In 2017 IEEE

Congress on Evolutionary Computation (CEC) (pp. 1474–1481). IEEE.

Tyasnurita, R., Özcan, E., Shahriar, A., & John, R. (2015). Improving

performance of a hyper-heuristic using a multilayer perceptron for vehicle

routing. In 15th UK Workshop on Computational Intelligence. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. Advances

in neural information processing systems , 30 .

Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). A hybrid genetic

algorithm with adaptive diversity management for a large class of vehicle

routing problems with time-windows. Computers & operations research,

40 , 475–489.

54

Walker, J. D., Ochoa, G., Gendreau, M., & Burke, E. K. (2012). Vehicle rout-

ing and adaptive iterated local search within the HyFlex hyper-heuristic

framework. In International Conference on Learning and Intelligent Opti-

mization (pp. 265–276). Springer.

Wan, H., Guo, S., Yin, K., Liang, X., & Lin, Y. (2020). CTS-LSTM: LSTM-

based neural networks for correlatedtime series prediction. Knowledge-

Based Systems , 191 , 105239.

Wong, R. T. (1983). Combinatorial optimization: Algorithms and complexity

(Christos H. Papadimitriou and Kenneth Steiglitz). SIAM Review , 25 ,

424.

Wu, Q., Ye, Y., Zhang, H., Ng, M. K., & Ho, S.-S. (2014). Forestexter:

An efficient random forest algorithm for imbalanced text categorization.

Knowledge-Based Systems , 67 , 105–116.

Xing, Z., Pei, J., & Keogh, E. (2010). A brief survey on sequence classifica-

tion. ACM Sigkdd Explorations Newsletter , 12 , 40–48.

Yates, W. B., & Keedwell, E. C. (2017). Offline learning for selection hyper-

heuristics with Elman networks. In International Conference on Artificial

Evolution (Evolution Artificielle) (pp. 217–230). Springer.

Yi, W., Qu, R., & Jiao, L. (2023). Automated algorithm design using proxi-

mal policy optimisation with identified features. Expert Systems with Ap-

plications , 216 , 119461.

55

Yi, W., Qu, R., Jiao, L., & Niu, B. (2022). Automated design of metaheuris-

tics using reinforcement learning within a novel general search framework.

IEEE Transactions on Evolutionary Computation, .

Zhou, L. (2013). Performance of corporate bankruptcy prediction models on

imbalanced dataset: The effect of sampling methods. Knowledge-Based

Systems , 41 , 16–25.

56

	Introduction
	Automated algorithm design defined as a machine learning task
	An overview of the general automated composition framework
	The new machine learning task on algorithm composition
	Discussion on the newly defined task

	Data of algorithm design for machine learning
	The VRPTW problem
	Collection of operator sequences with GCOP methods
	Feature processing
	Data imbalance in the operator sequence data set

	Learning from algorithmic components with LSTM
	Preliminary fundamentals of LSTM
	LSTM for operator sequences

	Findings of LSTM on automated algorithm composition
	Performance comparison of learning models
	Effects of re-sampling methods
	Impact from the length of operator sequences
	Investigations on features of operator sequences
	Effects of each feature
	Importance of the features
	Discussions of the features for operator sequences

	Conclusions and future workds
	Conclusions
	Discussion on the practical impacts of automated algorithm design
	Future works

